Mathematics for Finance

Author: Marek Capinski
Publisher: Springer
ISBN: 1852338466
Format: PDF, ePub, Docs
Download Now
This textbook contains the fundamentals for an undergraduate course in mathematical finance aimed primarily at students of mathematics. Assuming only a basic knowledge of probability and calculus, the material is presented in a mathematically rigorous and complete way. The book covers the time value of money, including the time structure of interest rates, bonds and stock valuation; derivative securities (futures, options), modelling in discrete time, pricing and hedging, and many other core topics. With numerous examples, problems and exercises, this book is ideally suited for independent study.

Mathematics for Finance

Author: Marek Capinski
Publisher: Springer
ISBN: 9781447139782
Format: PDF, Mobi
Download Now
This textbook contains the fundamentals for an undergraduate course in mathematical finance aimed primarily at students of mathematics. Assuming only a basic knowledge of probability and calculus, the material is presented in a mathematically rigorous and complete way. The book covers the time value of money, including the time structure of interest rates, bonds and stock valuation; derivative securities (futures, options), modelling in discrete time, pricing and hedging, and many other core topics. With numerous examples, problems and exercises, this book is ideally suited for independent study.

Mathematics for Finance

Author: Marek Capiński
Publisher: Springer
ISBN: 9780857290830
Format: PDF
Download Now
As with the first edition, Mathematics for Finance: An Introduction to Financial Engineering combines financial motivation with mathematical style. Assuming only basic knowledge of probability and calculus, it presents three major areas of mathematical finance, namely Option pricing based on the no-arbitrage principle in discrete and continuous time setting, Markowitz portfolio optimisation and Capital Asset Pricing Model, and basic stochastic interest rate models in discrete setting. From the reviews of the first edition: ”This text is an excellent introduction to Mathematical Finance. Armed with a knowledge of basic calculus and probability a student can use this book to learn about derivatives, interest rates and their term structure and portfolio management.”(Zentralblatt MATH) ”Given these basic tools, it is surprising how high a level of sophistication the authors achieve, covering such topics as arbitrage-free valuation, binomial trees, and risk-neutral valuation.” (www.riskbook.com) ”The reviewer can only congratulate the authors with successful completion of a difficult task of writing a useful textbook on a traditionally hard topic.” (K. Borovkov, The Australian Mathematical Society Gazette, Vol. 31 (4), 2004)

An Introduction to the Mathematics of Finance

Author: Stephen Garrett
Publisher: Butterworth-Heinemann
ISBN: 0080982751
Format: PDF
Download Now
An Introduction to the Mathematics of Finance: A Deterministic Approach, 2e, offers a highly illustrated introduction to mathematical finance, with a special emphasis on interest rates. This revision of the McCutcheon-Scott classic follows the core subjects covered by the first professional exam required of UK actuaries, the CT1 exam. It realigns the table of contents with the CT1 exam and includes sample questions from past exams of both The Actuarial Profession and the CFA Institute. With a wealth of solved problems and interesting applications, An Introduction to the Mathematics of Finance stands alone in its ability to address the needs of its primary target audience, the actuarial student. Closely follows the syllabus for the CT1 exam of The Institute and Faculty of Actuaries Features new content and more examples Online supplements available: http://booksite.elsevier.com/9780080982403/ Includes past exam questions from The Institute and Faculty of Actuaries and the CFA Institute

Introduction to the Mathematics of Finance

Author: Steven Roman
Publisher: Springer Science & Business Media
ISBN: 1441990054
Format: PDF, ePub
Download Now
An elementary introduction to probability and mathematical finance including a chapter on the Capital Asset Pricing Model (CAPM), a topic that is very popular among practitioners and economists. Dr. Roman has authored 32 books, including a number of books on mathematics, such as Coding and Information Theory, Advanced Linear Algebra, and Field Theory, published by Springer-Verlag.

The Mathematics of Finance

Author: Victor Goodman
Publisher: American Mathematical Soc.
ISBN: 9780821847930
Format: PDF
Download Now
This book is ideally suited for an introductory undergraduate course on financial engineering. It explains the basic concepts of financial derivatives, including put and call options, as well as more complex derivatives such as barrier options and options on futures contracts. Both discrete and continuous models of market behavior are developed in this book. In particular, the analysis of option prices developed by Black and Scholes is explained in a self-contained way, using both the probabilistic Brownian Motion method and the analytical differential equations method. The book begins with binomial stock price models, moves on to multistage models, then to the Cox-Ross-Rubinstein option pricing process, and then to the Black-Scholes formula. Other topics presented include Zero Coupon Bonds, forward rates, the yield curve, and several bond price models. The book continues with foreign exchange models and the Keynes Interest Rate Parity Formula, and concludes with the study of country risk, a topic not inappropriate for the times. In addition to theoretical results, numerical models are presented in much detail. Each of the eleven chapters includes a variety of exercises.

Introduction to the Mathematics of Finance

Author: Ruth J. Williams
Publisher: American Mathematical Soc.
ISBN: 0821839039
Format: PDF, ePub
Download Now
The modern subject of mathematical finance has undergone considerable development, both in theory and practice, since the seminal work of Black and Scholes appeared a third of a century ago. This book is intended as an introduction to some elements of the theory that will enable students and researchers to go on to read more advanced texts and research papers. The book begins with the development of the basic ideas of hedging and pricing of European and American derivatives in the discrete (i.e., discrete time and discrete state) setting of binomial tree models. Then a general discrete finite market model is introduced, and the fundamental theorems of asset pricing are proved in this setting. Tools from probability such as conditional expectation, filtration, (super)martingale, equivalent martingale measure, and martingale representation are all used first in this simple discrete framework. This provides a bridge to the continuous (time and state) setting, which requires the additional concepts of Brownian motion and stochastic calculus. The simplest model in the continuous setting is the famous Black-Scholes model, for which pricing and hedging of European and American derivatives are developed. The book concludes with a description of the fundamental theorems for a continuous market model that generalizes the simple Black-Scholes model in several directions.

The Concepts and Practice of Mathematical Finance

Author: Mark S. Joshi
Publisher: Cambridge University Press
ISBN: 0521514088
Format: PDF
Download Now
The second edition of a successful text providing the working knowledge needed to become a good quantitative analyst. An ideal introduction to mathematical finance, readers will gain a clear understanding of the intuition behind derivatives pricing, how models are implemented, and how they are used and adapted in practice.

Methods of Mathematical Finance

Author: Ioannis Karatzas
Publisher: Springer
ISBN: 1493968459
Format: PDF, ePub, Mobi
Download Now
This sequel to Brownian Motion and Stochastic Calculus by the same authors develops contingent claim pricing and optimal consumption/investment in both complete and incomplete markets, within the context of Brownian-motion-driven asset prices. The latter topic is extended to a study of equilibrium, providing conditions for existence and uniqueness of market prices which support trading by several heterogeneous agents. Although much of the incomplete-market material is available in research papers, these topics are treated for the first time in a unified manner. The book contains an extensive set of references and notes describing the field, including topics not treated in the book. This book will be of interest to researchers wishing to see advanced mathematics applied to finance. The material on optimal consumption and investment, leading to equilibrium, is addressed to the theoretical finance community. The chapters on contingent claim valuation present techniques of practical importance, especially for pricing exotic options.

Mathematical Finance

Author: Christian Fries
Publisher: John Wiley & Sons
ISBN: 9780470179772
Format: PDF, ePub
Download Now
A balanced introduction to the theoretical foundations and real-world applications of mathematical finance The ever-growing use of derivative products makes it essential for financial industry practitioners to have a solid understanding of derivative pricing. To cope with the growing complexity, narrowing margins, and shortening life-cycle of the individual derivative product, an efficient, yet modular, implementation of the pricing algorithms is necessary. Mathematical Finance is the first book to harmonize the theory, modeling, and implementation of today's most prevalent pricing models under one convenient cover. Building a bridge from academia to practice, this self-contained text applies theoretical concepts to real-world examples and introduces state-of-the-art, object-oriented programming techniques that equip the reader with the conceptual and illustrative tools needed to understand and develop successful derivative pricing models. Utilizing almost twenty years of academic and industry experience, the author discusses the mathematical concepts that are the foundation of commonly used derivative pricing models, and insightful Motivation and Interpretation sections for each concept are presented to further illustrate the relationship between theory and practice. In-depth coverage of the common characteristics found amongst successful pricing models are provided in addition to key techniques and tips for the construction of these models. The opportunity to interactively explore the book's principal ideas and methodologies is made possible via a related Web site that features interactive Java experiments and exercises. While a high standard of mathematical precision is retained, Mathematical Finance emphasizes practical motivations, interpretations, and results and is an excellent textbook for students in mathematical finance, computational finance, and derivative pricing courses at the upper undergraduate or beginning graduate level. It also serves as a valuable reference for professionals in the banking, insurance, and asset management industries.