Mathematics for the Analysis of Algorithms

Author: Daniel H. Greene
Publisher: Springer Science & Business Media
ISBN: 0817647295
Format: PDF, ePub, Docs
Download Now
This monograph collects some fundamental mathematical techniques that are required for the analysis of algorithms. It builds on the fundamentals of combinatorial analysis and complex variable theory to present many of the major paradigms used in the precise analysis of algorithms, emphasizing the more difficult notions. The authors cover recurrence relations, operator methods, and asymptotic analysis in a format that is concise enough for easy reference yet detailed enough for those with little background with the material.

Mathematics for the Analysis of Algorithms

Author: Daniel H. Greene
Publisher: Springer Science & Business Media
ISBN: 0817647295
Format: PDF
Download Now
This monograph collects some fundamental mathematical techniques that are required for the analysis of algorithms. It builds on the fundamentals of combinatorial analysis and complex variable theory to present many of the major paradigms used in the precise analysis of algorithms, emphasizing the more difficult notions. The authors cover recurrence relations, operator methods, and asymptotic analysis in a format that is concise enough for easy reference yet detailed enough for those with little background with the material.

Notes on Introductory Combinatorics

Author: George Polya
Publisher: Springer Science & Business Media
ISBN: 1475711018
Format: PDF, ePub, Docs
Download Now
In the winter of 1978, Professor George P61ya and I jointly taught Stanford University's introductory combinatorics course. This was a great opportunity for me, as I had known of Professor P61ya since having read his classic book, How to Solve It, as a teenager. Working with P6lya, who ·was over ninety years old at the time, was every bit as rewarding as I had hoped it would be. His creativity, intelligence, warmth and generosity of spirit, and wonderful gift for teaching continue to be an inspiration to me. Combinatorics is one of the branches of mathematics that play a crucial role in computer sCience, since digital computers manipulate discrete, finite objects. Combinatorics impinges on computing in two ways. First, the properties of graphs and other combinatorial objects lead directly to algorithms for solving graph-theoretic problems, which have widespread application in non-numerical as well as in numerical computing. Second, combinatorial methods provide many analytical tools that can be used for determining the worst-case and expected performance of computer algorithms. A knowledge of combinatorics will serve the computer scientist well. Combinatorics can be classified into three types: enumerative, eXistential, and constructive. Enumerative combinatorics deals with the counting of combinatorial objects. Existential combinatorics studies the existence or nonexistence of combinatorial configurations.

Algorithms and Programming

Author: Alexander Shen
Publisher: Springer Science & Business Media
ISBN: 1441917489
Format: PDF, Mobi
Download Now
This text is structured in a problem-solution format that requires the student to think through the programming process. New to the second edition are additional chapters on suffix trees, games and strategies, and Huffman coding as well as an Appendix illustrating the ease of conversion from Pascal to C.

The Discrete Math Workbook

Author: Sergei Kurgalin
Publisher: Springer
ISBN: 3319926454
Format: PDF, Mobi
Download Now
This practically-oriented textbook presents an accessible introduction to discrete mathematics through a substantial collection of classroom-tested exercises. Each chapter opens with concise coverage of the theory underlying the topic, reviewing the basic concepts and establishing the terminology, as well as providing the key formulae and instructions on their use. This is then followed by a detailed account of the most common problems in the area, before the reader is invited to practice solving such problems for themselves through a varied series of questions and assignments. Topics and features: provides an extensive set of exercises and examples of varying levels of complexity, suitable for both laboratory practical training and self-study; offers detailed solutions to many problems, applying commonly-used methods and computational schemes; introduces the fundamentals of mathematical logic, the theory of algorithms, Boolean algebra, graph theory, sets, relations, functions, and combinatorics; presents more advanced material on the design and analysis of algorithms, including asymptotic analysis, and parallel algorithms; includes reference lists of trigonometric and finite summation formulae in an appendix, together with basic rules for differential and integral calculus. This hands-on study guide is designed to address the core needs of undergraduate students training in computer science, informatics, and electronic engineering, emphasizing the skills required to develop and implement an algorithm in a specific programming language.

An Introduction to the Analysis of Algorithms

Author: Robert Sedgewick
Publisher: Addison-Wesley
ISBN: 0133373487
Format: PDF, Docs
Download Now
Despite growing interest, basic information on methods and models for mathematically analyzing algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary techniques and results in the field. Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for predicting algorithm performance and for comparing different algorithms on the basis of performance. Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings, tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of algorithms that are playing a critical role in the evolution of our modern computational infrastructure. Improvements and additions in this new edition include Upgraded figures and code An all-new chapter introducing analytic combinatorics Simplified derivations via analytic combinatorics throughout The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s The Art of Computer Programming books—and provide the background they need to keep abreast of new research. "[Sedgewick and Flajolet] are not only worldwide leaders of the field, they also are masters of exposition. I am sure that every serious computer scientist will find this book rewarding in many ways." —From the Foreword by Donald E. Knuth

Wavelets Made Easy

Author: Yves Nievergelt
Publisher: Springer Science & Business Media
ISBN: 1461460069
Format: PDF, ePub, Docs
Download Now
Originally published in 1999, Wavelets Made Easy offers a lucid and concise explanation of mathematical wavelets. Written at the level of a first course in calculus and linear algebra, its accessible presentation is designed for undergraduates in a variety of disciplines—computer science, engineering, mathematics, mathematical sciences—as well as for practicing professionals in these areas. The present softcover reprint retains the corrections from the second printing (2001) and makes this unique text available to a wider audience. The first chapter starts with a description of the key features and applications of wavelets, focusing on Haar's wavelets but using only high-school mathematics. The next two chapters introduce one-, two-, and three-dimensional wavelets, with only the occasional use of matrix algebra. The second part of this book provides the foundations of least-squares approximation, the discrete Fourier transform, and Fourier series. The third part explains the Fourier transform and then demonstrates how to apply basic Fourier analysis to designing and analyzing mathematical wavelets. Particular attention is paid to Daubechies wavelets. Numerous exercises, a bibliography, and a comprehensive index combine to make this book an excellent text for the classroom as well as a valuable resource for self-study.

Functional Analysis and Applications

Author: Abul Hasan Siddiqi
Publisher: Springer
ISBN: 9811037256
Format: PDF, Docs
Download Now
This self-contained textbook discusses all major topics in functional analysis. Combining classical materials with new methods, it supplies numerous relevant solved examples and problems and discusses the applications of functional analysis in diverse fields. The book is unique in its scope, and a variety of applications of functional analysis and operator-theoretic methods are devoted to each area of application. Each chapter includes a set of problems, some of which are routine and elementary, and some of which are more advanced. The book is primarily intended as a textbook for graduate and advanced undergraduate students in applied mathematics and engineering. It offers several attractive features making it ideally suited for courses on functional analysis intended to provide a basic introduction to the subject and the impact of functional analysis on applied and computational mathematics, nonlinear functional analysis and optimization. It introduces emerging topics like wavelets, Gabor system, inverse problems and application to signal and image processing.

Elementary Functions

Author: Jean-Michel Muller
Publisher: Birkhäuser
ISBN: 1489979832
Format: PDF, ePub, Docs
Download Now
This textbook presents the concepts and tools necessary to understand, build, and implement algorithms for computing elementary functions (e.g., logarithms, exponentials, and the trigonometric functions). Both hardware- and software-oriented algorithms are included, along with issues related to accurate floating-point implementation. This third edition has been updated and expanded to incorporate the most recent advances in the field, new elementary function algorithms, and function software. After a preliminary chapter that briefly introduces some fundamental concepts of computer arithmetic, such as floating-point arithmetic and redundant number systems, the text is divided into three main parts. Part I considers the computation of elementary functions using algorithms based on polynomial or rational approximations and using table-based methods; the final chapter in this section deals with basic principles of multiple-precision arithmetic. Part II is devoted to a presentation of “shift-and-add” algorithms (hardware-oriented algorithms that use additions and shifts only). Issues related to accuracy, including range reduction, preservation of monotonicity, and correct rounding, as well as some examples of implementation are explored in Part III. Numerous examples of command lines and full programs are provided throughout for various software packages, including Maple, Sollya, and Gappa. New to this edition are an in-depth overview of the IEEE-754-2008 standard for floating-point arithmetic; a section on using double- and triple-word numbers; a presentation of new tools for designing accurate function software; and a section on the Toom-Cook family of multiplication algorithms. The techniques presented in this book will be of interest to implementers of elementary function libraries or circuits and programmers of numerical applications. Additionally, graduate and advanced undergraduate students, professionals, and researchers in scientific computing, numerical analysis, software engineering, and computer engineering will find this a useful reference and resource. PRAISE FOR PREVIOUS EDITIONS “[T]his book seems like an essential reference for the experts (which I'm not). More importantly, this is an interesting book for the curious (which I am). In this case, you'll probably learn many interesting things from this book. If you teach numerical analysis or approximation theory, then this book will give you some good examples to discuss in class." — MAA Reviews (Review of Second Edition) "The rich content of ideas sketched or presented in some detail in this book is supplemented by a list of over three hundred references, most of them of 1980 or more recent. The book also contains some relevant typical programs." — Zentralblatt MATH (Review of Second Edition) “I think that the book will be very valuable to students both in numerical analysis and in computer science. I found [it to be] well written and containing much interesting material, most of the time disseminated in specialized papers published in specialized journals difficult to find." — Numerical Algorithms (Review of First Edition)

Approximation Randomization and Combinatorial Optimization Algorithms and Techniques

Author: Anupam Gupta
Publisher: Springer
ISBN: 3642325122
Format: PDF, Kindle
Download Now
This book constitutes the joint refereed proceedings of the 15th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2012, and the 16th International Workshop on Randomization and Computation, RANDOM 2012, held in Cambridge, Massachusetts, USA, in August 2011. The volume contains 28 contributed papers, selected by the APPROX Program Committee out of 70 submissions, and 28 contributed papers, selected by the RANDOM Program Committee out of 67 submissions. APPROX focuses on algorithmic and complexity issues surrounding the development of efficient approximate solutions to computationally difficult problems. RANDOM is concerned with applications of randomness to computational and combinatorial problems.