Mathematics of Multidimensional Fourier Transform Algorithms

Author: Richard Tolimieri
Publisher: Springer Science & Business Media
ISBN: 1461219485
Format: PDF, ePub
Download Now
Developing algorithms for multi-dimensional Fourier transforms, this book presents results that yield highly efficient code on a variety of vector and parallel computers. By emphasising the unified basis for the many approaches to both one-dimensional and multidimensional Fourier transforms, this book not only clarifies the fundamental similarities, but also shows how to exploit the differences in optimising implementations. It will thus be of great interest not only to applied mathematicians and computer scientists, but also to seismologists, high-energy physicists, crystallographers, and electrical engineers working on signal and image processing.

Mathematics of multidimensional Fourier transform alogrithms

Author: Richard Tolimieri
Publisher: Springer Verlag
ISBN: 9780387941059
Format: PDF, ePub
Download Now
The main emphasis of this book is the development of algorithms for processing multi-dimensional digital signals, and particularly algorithms for multi-dimensional Fourier transforms, in a form that is convenient for writing highly efficient code on a variety of vector and parallel computers.

The Digital Signal Processing Handbook

Author: VIJAY MADISETTI
Publisher: CRC Press
ISBN: 9780849385728
Format: PDF
Download Now
The field of digital signal processing (DSP) has spurred developments from basic theory of discrete-time signals and processing tools to diverse applications in telecommunications, speech and acoustics, radar, and video. This volume provides an accessible reference, offering theoretical and practical information to the audience of DSP users. This immense compilation outlines both introductory and specialized aspects of information-bearing signals in digital form, creating a resource relevant to the expanding needs of the engineering community. It also explores the use of computers and special-purpose digital hardware in extracting information or transforming signals in advantageous ways. Impacted areas presented include: Telecommunications Computer engineering Acoustics Seismic data analysis DSP software and hardware Image and video processing Remote sensing Multimedia applications Medical technology Radar and sonar applications This authoritative collaboration, written by the foremost researchers and practitioners in their fields, comprehensively presents the range of DSP: from theory to application, from algorithms to hardware.

Digital Signal Processing Fundamentals

Author: Vijay Madisetti
Publisher: CRC Press
ISBN: 9781420046076
Format: PDF, Docs
Download Now
Now available in a three-volume set, this updated and expanded edition of the bestselling The Digital Signal Processing Handbook continues to provide the engineering community with authoritative coverage of the fundamental and specialized aspects of information-bearing signals in digital form. Encompassing essential background material, technical details, standards, and software, the second edition reflects cutting-edge information on signal processing algorithms and protocols related to speech, audio, multimedia, and video processing technology associated with standards ranging from WiMax to MP3 audio, low-power/high-performance DSPs, color image processing, and chips on video. Drawing on the experience of leading engineers, researchers, and scholars, the three-volume set contains 29 new chapters that address multimedia and Internet technologies, tomography, radar systems, architecture, standards, and future applications in speech, acoustics, video, radar, and telecommunications. Emphasizing theoretical concepts, Digital Signal Processing Fundamentals provides comprehensive coverage of the basic foundations of DSP and includes the following parts: Signals and Systems; Signal Representation and Quantization; Fourier Transforms; Digital Filtering; Statistical Signal Processing; Adaptive Filtering; Inverse Problems and Signal Reconstruction; and Time–Frequency and Multirate Signal Processing.

The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing

Author: Sonali Bagchi
Publisher: Springer Science & Business Media
ISBN: 1461549256
Format: PDF, Mobi
Download Now
The growth in the field of digital signal processing began with the simulation of continuous-time systems in the 1950s, even though the origin of the field can be traced back to 400 years when methods were developed to solve numerically problems such as interpolation and integration. During the last 40 years, there have been phenomenal advances in the theory and application of digital signal processing. In many applications, the representation of a discrete-time signal or a sys tem in the frequency domain is of interest. To this end, the discrete-time Fourier transform (DTFT) and the z-transform are often used. In the case of a discrete-time signal of finite length, the most widely used frequency-domain representation is the discrete Fourier transform (DFT) which results in a finite length sequence in the frequency domain. The DFT is simply composed of the samples of the DTFT of the sequence at equally spaced frequency points, or equivalently, the samples of its z-transform at equally spaced points on the unit circle. The DFT provides information about the spectral contents of the signal at equally spaced discrete frequency points, and thus, can be used for spectral analysis of signals. Various techniques, commonly known as the fast Fourier transform (FFT) algorithms, have been advanced for the efficient com putation of the DFT. An important tool in digital signal processing is the linear convolution of two finite-length signals, which often can be implemented very efficiently using the DFT.

Fast Fourier Transform Algorithms and Applications

Author: K.R. Rao
Publisher: Springer Science & Business Media
ISBN: 9781402066290
Format: PDF, ePub
Download Now
This book presents an introduction to the principles of the fast Fourier transform. This book covers FFTs, frequency domain filtering, and applications to video and audio signal processing. As fields like communications, speech and image processing, and related areas are rapidly developing, the FFT as one of essential parts in digital signal processing has been widely used. Thus there is a pressing need from instructors and students for a book dealing with the latest FFT topics. This book provides thorough and detailed explanation of important or up-to-date FFTs. It also has adopted modern approaches like MATLAB examples and projects for better understanding of diverse FFTs.

Discrete Fourier Analysis and Wavelets

Author: S. Allen Broughton
Publisher: John Wiley & Sons
ISBN: 1118211006
Format: PDF
Download Now
A thorough guide to the classical and contemporary mathematical methods of modern signal and image processing Discrete Fourier Analysis and Wavelets presents a thorough introduction to the mathematical foundations of signal and image processing. Key concepts and applications are addressed in a thought-provoking manner and are implemented using vector, matrix, and linear algebra methods. With a balanced focus on mathematical theory and computational techniques, this self-contained book equips readers with the essential knowledge needed to transition smoothly from mathematical models to practical digital data applications. The book first establishes a complete vector space and matrix framework for analyzing signals and images. Classical methods such as the discrete Fourier transform, the discrete cosine transform, and their application to JPEG compression are outlined followed by coverage of the Fourier series and the general theory of inner product spaces and orthogonal bases. The book then addresses convolution, filtering, and windowing techniques for signals and images. Finally, modern approaches are introduced, including wavelets and the theory of filter banks as a means of understanding the multiscale localized analysis underlying the JPEG 2000 compression standard. Throughout the book, examples using image compression demonstrate how mathematical theory translates into application. Additional applications such as progressive transmission of images, image denoising, spectrographic analysis, and edge detection are discussed. Each chapter provides a series of exercises as well as a MATLAB project that allows readers to apply mathematical concepts to solving real problems. Additional MATLAB routines are available via the book's related Web site. With its insightful treatment of the underlying mathematics in image compression and signal processing, Discrete Fourier Analysis and Wavelets is an ideal book for mathematics, engineering, and computer science courses at the upper-undergraduate and beginning graduate levels. It is also a valuable resource for mathematicians, engineers, and other practitioners who would like to learn more about the relevance of mathematics in digital data processing.

Analysis of Geophysical Potential Fields

Author: P.S. Naidu
Publisher: Elsevier
ISBN: 9780080527123
Format: PDF, ePub, Mobi
Download Now
When some useful information is hidden behind a mass of unwanted information we often resort to information processing used in its broad sense or specifically to signal processing when the useful information is a waveform. In geophysical surveys, in particular in aeromagnetic and gravity surveys, from the measured field it is often difficult to say much about any one specific target unless it is close to the surface and well isolated from the rest. The digital signal processing approach would enable us to bring out the underlying model of the source, that is, the geological structure. Some of the tools of dsp such as digital filtering, spectrum estimation, inversion, etc., have found extensive applications in aeromagnetic and gravity map analysis. There are other emerging applications of dsp in the area of inverse filtering, three dimensional visualization, etc. The purpose of this book is to bring numerous tools of dsp to the geophysical community, in particular, to those who are entering the geophysical profession. Also the practicing geophysicists, involved in the aeromagnetic and gravity data analysis, using the commercially available software packages, will find this book useful in answering their questions on "why and how?". It is hoped that such a background would enable the practising geophysicists to appreciate the prospects and limitations of the dsp in extracting useful information from the potential field maps. The topics covered are: potential field signals and models, digital filtering in two dimensions, spectrum estimation and application, parameter estimation with error bounds.

The Fast Fourier Transform and Its Applications

Author: E. Oran Brigham
Publisher:
ISBN:
Format: PDF, Docs
Download Now
The Fast Fourier Transform (FFT) is a mathematical method widely used in signal processing. This book focuses on the application of the FFT in a variety of areas: Biomedical engineering, mechanical analysis, analysis of stock market data, geophysical analysis, and the conventional radar communications field.