Author: Denis Serre
Publisher: Springer Science & Business Media
ISBN: 9781441976833
Format: PDF, ePub
Download Now
In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: • Dunford decomposition, • tensor and exterior calculus, polynomial identities, • regularity of eigenvalues for complex matrices, • functional calculus and the Dunford–Taylor formula, • numerical range, • Weyl's and von Neumann’s inequalities, and • Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon.

Matrix Inequalities and Their Extensions to Lie Groups

Author: Tin-Yau Tam
Publisher: CRC Press
ISBN: 0429889283
Format: PDF, ePub, Mobi
Download Now
Matrix Inequalities and Their Extensions to Lie Groups gives a systematic and updated account of recent important extensions of classical matrix results, especially matrix inequalities, in the context of Lie groups. It is the first systematic work in the area and will appeal to linear algebraists and Lie group researchers.

Computational Science and Its Applications ICCSA 2017

Author: Osvaldo Gervasi
Publisher: Springer
ISBN: 3319624075
Format: PDF, ePub
Download Now
The six-volume set LNCS 10404-10409 constitutes the refereed proceedings of the 17th International Conference on Computational Science and Its Applications, ICCSA 2017, held in Trieste, Italy, in July 2017. The 313 full papers and 12 short papers included in the 6-volume proceedings set were carefully reviewed and selected from 1052 submissions. Apart from the general tracks, ICCSA 2017 included 43 international workshops in various areas of computational sciences, ranging from computational science technologies to specific areas of computational sciences, such as computer graphics and virtual reality. Furthermore, this year ICCSA 2017 hosted the XIV International Workshop On Quantum Reactive Scattering. The program also featured 3 keynote speeches and 4 tutorials.

Linear Algebra

Author: Belkacem Said-Houari
Publisher: Birkhäuser
ISBN: 3319637932
Format: PDF, ePub
Download Now
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing the necessary concepts of eigenvalues and eigenvectors, as well as the theory of symmetric and orthogonal matrices. Each idea presented is followed by examples. The book includes a set of exercises at the end of each chapter, which have been carefully chosen to illustrate the main ideas. Some of them were taken (with some modifications) from recently published papers, and appear in a textbook for the first time. Detailed solutions are provided for every exercise, and these refer to the main theorems in the text when necessary, so students can see the tools used in the solution.


Author: Peter Abramenko
Publisher: Springer Science & Business Media
ISBN: 0387788352
Format: PDF, Kindle
Download Now
This book treats Jacques Tit's beautiful theory of buildings, making that theory accessible to readers with minimal background. It covers all three approaches to buildings, so that the reader can choose to concentrate on one particular approach. Beginners can use parts of the new book as a friendly introduction to buildings, but the book also contains valuable material for the active researcher. This book is suitable as a textbook, with many exercises, and it may also be used for self-study.

Ordinary Differential Equations

Author: Wolfgang Walter
Publisher: Springer Science & Business Media
ISBN: 9780387984599
Format: PDF
Download Now
Based on a translation of the 6th edition of Gewöhnliche Differentialgleichungen by Wolfgang Walter, this edition includes additional treatments of important subjects not found in the German text as well as material that is seldom found in textbooks, such as new proofs for basic theorems. This unique feature of the book calls for a closer look at contents and methods with an emphasis on subjects outside the mainstream. Exercises, which range from routine to demanding, are dispersed throughout the text and some include an outline of the solution. Applications from mechanics to mathematical biology are included and solutions of selected exercises are found at the end of the book. It is suitable for mathematics, physics, and computer science graduate students to be used as collateral reading and as a reference source for mathematicians. Readers should have a sound knowledge of infinitesimal calculus and be familiar with basic notions from linear algebra; functional analysis is developed in the text when needed.

Symmetry Representations and Invariants

Author: Roe Goodman
Publisher: Springer Science & Business Media
ISBN: 0387798528
Format: PDF, Docs
Download Now
Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants: (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.