Matrix algebra useful for statistics

Author: Shayle R. Searle
Publisher: Wiley-Interscience
ISBN:
Format: PDF, ePub, Docs
Download Now
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This book is intended to teach useful matrix algebra to 'students, teachers, consultants, researchers, and practitioners' in 'statistics and other quantitative methods'.The author concentrates on practical matters, and writes in a friendly and informal style . . . this is a useful and enjoyable book to have at hand." -Biometrics This book is an easy-to-understand guide to matrix algebra and its uses in statistical analysis. The material is presented in an explanatory style rather than the formal theorem-proof format. This self-contained text includes numerous applied illustrations, numerical examples, and exercises.

Matrix Algebra for Applied Economics

Author: Shayle R. Searle
Publisher: Wiley-Interscience
ISBN: 9780471322078
Format: PDF
Download Now
Coverage of matrix algebra for economists and students of economics Matrix Algebra for Applied Economics explains the important tool of matrix algebra for students of economics and practicing economists. It includes examples that demonstrate the foundation operations of matrix algebra and illustrations of using the algebra for a variety of economic problems. The authors present the scope and basic definitions of matrices, their arithmetic and simple operations, and describe special matrices and their properties, including the analog of division. They provide in-depth coverage of necessary theory and deal with concepts and operations for using matrices in real-life situations. They discuss linear dependence and independence, as well as rank, canonical forms, generalized inverses, eigenroots, and vectors. Topics of prime interest to economists are shown to be simplified using matrix algebra in linear equations, regression, linear models, linear programming, and Markov chains. Highlights include: * Numerous examples of real-world applications * Challenging exercises throughout the book * Mathematics understandable to readers of all backgrounds * Extensive up-to-date reference material Matrix Algebra for Applied Economics provides excellent guidance for advanced undergraduate students and also graduate students. Practicing economists who want to sharpen their skills will find this book both practical and easy-to-read, no matter what their applied interests.

Linear Algebra and Matrix Analysis for Statistics

Author: Sudipto Banerjee
Publisher: CRC Press
ISBN: 1420095382
Format: PDF, Kindle
Download Now
Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.

Longitudinal Data Analysis

Author: Donald Hedeker
Publisher: John Wiley & Sons
ISBN: 0470036478
Format: PDF
Download Now
Longitudinal data analysis for biomedical and behavioral sciences This innovative book sets forth and describes methods for the analysis of longitudinaldata, emphasizing applications to problems in the biomedical and behavioral sciences. Reflecting the growing importance and use of longitudinal data across many areas of research, the text is designed to help users of statistics better analyze and understand this type of data. Much of the material from the book grew out of a course taught by Dr. Hedeker on longitudinal data analysis. The material is, therefore, thoroughly classroom tested and includes a number of features designed to help readers better understand and apply the material. Statistical procedures featured within the text include: * Repeated measures analysis of variance * Multivariate analysis of variance for repeated measures * Random-effects regression models (RRM) * Covariance-pattern models * Generalized-estimating equations (GEE) models * Generalizations of RRM and GEE for categorical outcomes Practical in their approach, the authors emphasize the applications of the methods, using real-world examples for illustration. Some syntax examples are provided, although the authors do not generally focus on software in this book. Several datasets and computer syntax examples are posted on this title's companion Web site. The authors intend to keep the syntax examples current as new versions of the software programs emerge. This text is designed for both undergraduate and graduate courses in longitudinal data analysis. Instructors can take advantage of overheads and additional course materials available online for adopters. Applied statisticians in biomedicine and the social sciences can also use the book as a convenient reference.

TEXTBOOK OF MATRIX ALGEBRA

Author: SUDDHENDU BISWAS
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120346238
Format: PDF, ePub, Docs
Download Now
Intended as a text for postgraduate and undergraduate honours students of Statistics, Mathematics, Operations Research as well as students in various branches of Engineering, this student-friendly book gives an indepth analysis of Matrix Algebra and all the major topics related to it. Divided into 12 chapters, the book begins with a discussion on Elements of Matrix Theory and Some Special Matrices. Then it goes on to give a detailed discussion on Scalar Function and Inverse of a Matrix, Rank of a Matrix, Generalized Inverse of a Matrix, and Quadric Forms and Inequalities. The book concludes by giving Some Applications of Algebra of Matrices, Matrices in the Infinite Dimensional Vector Space, and Computational Tracts in Matrices. KEY FEATURES Gives a large number of both solved and unsolved problems of Elementary Matrix. Provides an exhaustive treatment of Generalized Inverse Matrix with many applications in Statistics. Devotes one chapter exclusively to application of Matrices. Provides one full chapter on Matrices in the Infinite Dimensional Vector Space, which will be quite useful for postgraduate students. Gives an Appendix on R Software which will be extremely useful for students of Statistics. Provides Question Bank which will greatly benefit both undergraduate and postgraduate students. This book, which beautifully blends both theory and applications of Matrix Algebra, should prove to be an invaluable text for the students.

Quantitative Methods

Author: Paolo Brandimarte
Publisher: John Wiley & Sons
ISBN: 9781118023488
Format: PDF, ePub, Mobi
Download Now
An accessible introduction to the essential quantitative methods for making valuable business decisions Quantitative methods-research techniques used to analyze quantitative data-enable professionals to organize and understand numbers and, in turn, to make good decisions. Quantitative Methods: An Introduction for Business Management presents the application of quantitative mathematical modeling to decision making in a business management context and emphasizes not only the role of data in drawing conclusions, but also the pitfalls of undiscerning reliance of software packages that implement standard statistical procedures. With hands-on applications and explanations that are accessible to readers at various levels, the book successfully outlines the necessary tools to make smart and successful business decisions. Progressing from beginner to more advanced material at an easy-to-follow pace, the author utilizes motivating examples throughout to aid readers interested in decision making and also provides critical remarks, intuitive traps, and counterexamples when appropriate. The book begins with a discussion of motivations and foundations related to the topic, with introductory presentations of concepts from calculus to linear algebra. Next, the core ideas of quantitative methods are presented in chapters that explore introductory topics in probability, descriptive and inferential statistics, linear regression, and a discussion of time series that includes both classical topics and more challenging models. The author also discusses linear programming models and decision making under risk as well as less standard topics in the field such as game theory and Bayesian statistics. Finally, the book concludes with a focus on selected tools from multivariate statistics, including advanced regression models and data reduction methods such as principal component analysis, factor analysis, and cluster analysis. The book promotes the importance of an analytical approach, particularly when dealing with a complex system where multiple individuals are involved and have conflicting incentives. A related website features Microsoft Excel® workbooks and MATLAB® scripts to illustrate concepts as well as additional exercises with solutions. Quantitative Methods is an excellent book for courses on the topic at the graduate level. The book also serves as an authoritative reference and self-study guide for financial and business professionals, as well as readers looking to reinforce their analytical skills.

Quantitative Trait Loci Analysis in Animals

Author: Joel Ira Weller
Publisher: CABI
ISBN: 1845934679
Format: PDF
Download Now
Quantitative Trait Loci (QTL) is a topic of major agricultural significance for efficient livestock production. This advanced-level textbook covers all the statistical methods that have been used or proposed for detection and analysis of QTL and marker- and gene- assisted selection in animal genetics and breeding, as well as new advances that have revolutionized the field since the first edition.

Robust Statistics

Author: Frank R. Hampel
Publisher: John Wiley & Sons
ISBN: 1118150686
Format: PDF, ePub, Docs
Download Now
The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "This is a nice book containing a wealth of information, much ofit due to the authors. . . . If an instructor designing such acourse wanted a textbook, this book would be the best choiceavailable. . . . There are many stimulating exercises, and the bookalso contains an excellent index and an extensive list ofreferences." —Technometrics "[This] book should be read carefully by anyone who isinterested in dealing with statistical models in a realisticfashion." —American Scientist Introducing concepts, theory, and applications, RobustStatistics is accessible to a broad audience, avoidingallusions to high-powered mathematics while emphasizing ideas,heuristics, and background. The text covers the approach based onthe influence function (the effect of an outlier on an estimater,for example) and related notions such as the breakdown point. Italso treats the change-of-variance function, fundamental conceptsand results in the framework of estimation of a single parameter,and applications to estimation of covariance matrices andregression parameters.