Mechanics of Laminated Composite Plates and Shells

Author: J. N. Reddy
Publisher: CRC Press
ISBN: 9780203502808
Format: PDF, ePub, Mobi
Download Now
The use of composite materials in engineering structures continues to increase dramatically, and there have been equally significant advances in modeling for general and composite materials and structures in particular. To reflect these developments, renowned author, educator, and researcher J.N. Reddy created an enhanced second edition of his standard-setting Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. This edition includes: A chapter dedicated to the theory and analysis of laminated shells Discussions addressing smart structures and functionally graded materials Reorganization of chapters that improves and clarifies presentation Additional exercises and examples A timelessly valuable resource, this book approaches the subject primarily in terms of the finite element method. It provides incomparably full, self-contained coverage of the theories, analytical solutions, and linear and nonlinear finite element models of plate and shell laminated composite structures.

Theory and Analysis of Elastic Plates and Shells Second Edition

Author: J. N. Reddy
Publisher: CRC Press
ISBN: 9780849384158
Format: PDF
Download Now
Because plates and shells are common structural elements in aerospace, automotive, and civil engineering structures, engineers must understand the behavior of such structures through the study of theory and analysis. Compiling this information into a single volume, Theory and Analysis of Elastic Plates and Shells, Second Edition presents a complete, up-to-date, and unified treatment of classical and shear deformation plates and shells, from the basic derivation of theories to analytical and numerical solutions. Revised and updated, this second edition incorporates new information in most chapters, along with some rearrangement of topics to improve the clarity of the overall presentation. The book presents new material on the theory and analysis of shells, featuring an additional chapter devoted to the topic. The author also includes new sections that address Castigliano's theorems, axisymmetric buckling of circular plates, the relationships between the solutions of classical and shear deformation theories, and the nonlinear finite element analysis of plates. The book provides many illustrations of theories, formulations, and solution methods, resulting in an easy-to-understand presentation of the topics. Like the previous edition, this book remains a suitable textbook for a course on plates and shells in aerospace, civil, and mechanical engineering curricula and continues to serve as a reference for industrial and academic structural engineers and scientists.

Mechanics of Solids and Structures Second Edition

Author: Roger T. Fenner
Publisher: CRC Press
ISBN: 1439858144
Format: PDF, Mobi
Download Now
A popular text in its first edition, Mechanics of Solids and Structures serves as a course text for the senior/graduate (fourth or fifth year) courses/modules in the mechanics of solid/advanced strength of materials, offered in aerospace, civil, engineering science, and mechanical engineering departments. Now, Mechanics of Solid and Structure, Second Edition presents the latest developments in computational methods that have revolutionized the field, while retaining all of the basic principles and foundational information needed for mastering advanced engineering mechanics. Key changes to the second edition include full-color illustrations throughout, web-based computational material, and the addition of a new chapter on the energy methods of structural mechanics. Using authoritative, yet accessible language, the authors explain the construction of expressions for both total potential energy and complementary potential energy associated with structures. They explore how the principles of minimal total potential energy and complementary energy provide the means to obtain governing equations of the structure, as well as a means to determine point forces and displacements with ease using Castigliano’s Theorems I and II. The material presented in this chapter also provides a deeper understanding of the finite element method, the most popular method for solving structural mechanics problems. Integrating computer techniques and programs into the body of the text, all chapters offer exercise problems for further understanding. Several appendices provide examples, answers to select problems, and opportunities for investigation into complementary topics. Listings of computer programs discussed are available on the CRC Press website.

Nonlinear Mechanics of Shells and Plates in Composite Soft and Biological Materials

Author: Marco Amabili
Publisher: Cambridge University Press
ISBN: 1107129222
Format: PDF, ePub, Mobi
Download Now
This book guides the reader into the modelling of shell structures in applications where advanced composite materials or complex biological materials must be described with great accuracy. A valuable resource for researchers, professionals and graduate students, it presents a variety of practical concepts, diagrams and numerical results.

III European Conference on Computational Mechanics

Author: C. A. Mota Soares
Publisher: Springer Science & Business Media
ISBN: 1402053703
Format: PDF, ePub
Download Now
III European Conference on Computational Mechanics: Solids, Structures and Coupled Problem in Engineering Computational Mechanics in Solid, Structures and Coupled Problems in Engineering is today a mature science with applications to major industrial projects. This book contains the edited version of the Abstracts of Plenary and Keynote Lectures and Papers, and a companion CD-ROM with the full-length papers, presented at the III European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering (ECCM-2006), held in the National Laboratory of Civil Engineering, Lisbon, Portugal 5th - 8th June 2006. The book reflects the state-of-art of Computation Mechanics in Solids, Structures and Coupled Problems in Engineering and it includes contributions by the world most active researchers in this field.

Nichtlineare Finite Elemente Analyse von Festk rpern und Strukturen

Author: Ren? de Borst
Publisher: John Wiley & Sons
ISBN: 3527678026
Format: PDF, ePub, Mobi
Download Now
Echte Ingenieursprobleme sind intrinsisch nichtlinear. Kennnisse der nichtlinearen Finiten-Elemente-Analyse sind f?r Maschinenbauer, Bauingenieure und Werkstofftechniker daher unabdingbar. Mit ihrer Hilfe lassen sich mechanische Festigkeitsberechnungen durchf?hren, zeit- und kostenintensive Tests bei der Produktentwicklung werden so reduziert. Didaktisch schl?ssig vom Modell und dessen theoretischer Durchdringung bis zum Algorithmus und dessen praktischer Implementierung bietet dieses Buch eine Einf?hrung in die nichtlineare Finite-Elemente-Analyse ? leicht zug?nglich, kompakt und auf die technische Ausrichtung fokussiert: - mathematische und kontinuumsmechanische Grundlagen, L?sungstechniken f?r nichtlineare Probleme in der statischen und dynamischen Analyse - erste Einblicke in geometrische Nichtlinearit?ten - Sch?digung, Plastizit?t und zeitabh?ngige Nichtlinearit?ten - Plastizit?t von Balken, B?gen und Schalen - elastische und elastoplastische Finite-Elemente-Analyse gro?er Dehnungen - Einf?hrung in moderne Diskretisierungskonzepte Hilfreich f?rs Bestehen von Pr?fungen sind die Beispiele im frei erh?ltlichen Finite-Elemente-Code auf Python?-Basis. Das dazugeh?rige Hintergrundwissen macht den User mit den M?glichkeiten und Grenzen moderner Finite-Elemente-Software vertraut. Der ideale Einstieg in die nichtlineare Finite-Elemente-Analyse f?r Studenten und Praktiker ? mit so viel Mathematik wie n?tig und so vielen realen Ingenieursproblemen wie m?glich. Mit Beispielen im Finite-Elemente-Code auf Python?-Basis unter: www.wiley-vch.de

Differentialgeometrie

Author: Wolfgang Kühnel
Publisher: Springer-Verlag
ISBN: 3658006153
Format: PDF, ePub, Docs
Download Now
Dieses Buch ist eine Einführung in die Differentialgeometrie und ein passender Begleiter zum Differentialgeometrie-Modul (ein- und zweisemestrig). Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Bei der Neuauflage wurden einige zusätzliche Lösungen zu den Übungsaufgaben ergänzt.