Mechanics of Materials

Author: E. J. Hearn
Publisher: Elsevier
ISBN: 1483105547
Format: PDF, Docs
Download Now
Mechanics of Materials, Second Edition, Volume 2 presents discussions and worked examples of the behavior of solid bodies under load. The book covers the components and their respective mechanical behavior. The coverage of the text includes components such cylinders, struts, and diaphragms. The book covers the methods for analyzing experimental stress; torsion of non-circular and thin-walled sections; and strains beyond the elastic limit. Fatigue, creep, and fracture are also discussed. The text will be of great use to undergraduate and practitioners of various engineering braches, such as materials engineering and structural engineering.

Mechanics of Materials Volume 1

Author: E.J. Hearn
Publisher: Elsevier
ISBN: 0080523994
Format: PDF
Download Now
One of the most important subjects for any student of engineering to master is the behaviour of materials and structures under load. The way in which they react to applied forces, the deflections resulting and the stresses and strains set up in the bodies concerned are all vital considerations when designing a mechanical component such that it will not fail under predicted load during its service lifetime. All the essential elements of a treatment of these topics are contained within this course of study, starting with an introduction to the concepts of stress and strain, shear force and bending moments and moving on to the examination of bending, shear and torsion in elements such as beams, cylinders, shells and springs. A simple treatment of complex stress and complex strain leads to a study of the theories of elastic failure and an introduction to the experimental methods of stress and strain analysis. More advanced topics are dealt with in a companion volume - Mechanics of Materials 2. Each chapter contains a summary of the essential formulae which are developed in the chapter, and a large number of worked examples which progress in level of difficulty as the principles are enlarged upon. In addition, each chapter concludes with an extensive selection of problems for solution by the student, mostly examination questions from professional and academic bodies, which are graded according to difficulty and furnished with answers at the end. * Emphasis on practical learning and applications, rather than theory * Provides the essential formulae for each individual chapter * Contains numerous worked examples and problems

Mechanics of materials

Author: Edwin John Hearn
Publisher: Pergamon
ISBN: 9780080305295
Format: PDF, ePub, Docs
Download Now
Substantially extended revision of the highly successful first edition, covering the behaviour of solid bodies under load. Components considered in detail include beams, shafts, cylinders, struts, diaphragms and springs. The theories of elastic failure, 2 and 3 dimensional stress and strain systems, post yield behaviour and experimental stress analysis techniques are also extensively covered. The second edition contains important new chapters on fatigue, creep and fracture, and on contact stresses, residual stresses and stress concentrations. Contains a large number of worked examples (150) and problems (500).

Mechanics of Material Behavior

Author: G.J. Dvorak
Publisher: Elsevier
ISBN: 1483289788
Format: PDF
Download Now
Studies in Applied Mechanics, Volume 6: Mechanics of Material Behavior provides information pertinent to the fundamental aspects of the mechanics of material behavior. This book discusses the theory of plasticity and its application to the design of engineering components and structures. Organized into 24 chapters, this volume begins with an overview of the concept of material stability, which provided a unified approach for the derivation of stress–strain relations for the plastic behavior of metals. This text then examines the general equation for the plane-stress condition of orthotropic sheet material that is isotropic in its plane. Other chapters consider the developments in plasticity as applied to soil mechanics, with emphasis on applications to earthquake-induced landslide problems. This book discusses as well the restrictions on a hypothesized quasi-statically propagating planar surface. The final chapter deals with the effects of fiber orientation, delamination length, and ply thickness on the interlaminar fracture. This book is a valuable resource for engineers.

Mechanics of Solids and Materials

Author: Robert Asaro
Publisher: Cambridge University Press
ISBN: 9780521859790
Format: PDF, Mobi
Download Now
This 2006 book combines modern and traditional solid mechanics topics in a coherent theoretical framework.

Mechanics of Materials and Structures

Author: George Z. Voyiadjis
Publisher: Elsevier
ISBN: 1483291545
Format: PDF, Docs
Download Now
A wide range of topics in the area of mechanics of materials and structures are covered in this volume, ranging from analysis to design. There is no special emphasis on a specific area of research. The first section of the book deals with topics on the mechanics and damage of concrete. It also includes two papers on granular packing structure changes and cumulative damage in polymers. In the second part more theoretical topics in mechanics are discussed, such as shell theory and nonlinear elasticity. The following section dicusses areas dealing primarily with plasticity, viscoelasticity, and viscoplasticity. These include such topics as dynamic and cyclic plasticity. In the final section the subject is structural dynamics, including seismic analysis, composite frames and nonlinear analysis of bridges. The volume is compiled in honor of Professor Maciej P. Bieniek who has served as a teacher and researcher at several universities, and who has made many significant contributions in the evaluation, rehabilitation, and design of infrastructures.

Mechanics of Solids and Structures

Author: David W A Rees
Publisher: World Scientific Publishing Company
ISBN: 1783264101
Format: PDF, ePub, Docs
Download Now
The fifteen chapters of this book are arranged in a logical progression. The text begins with the more fundamental material on stress and strain transformations with elasticity theory for plane and axially symmetric bodies, followed by a full treatment of the theories of bending and torsion. Coverage of moment distribution, shear flow, struts and energy methods precede a chapter on finite elements. Thereafter, the book presents yield and strength criteria, plasticity, collapse, creep, visco-elasticity, fatigue and fracture mechanics. Appended is material on the properties of areas, matrices and stress concentrations. Each topic is illustrated by worked examples and supported by numerous exercises drawn from the author's teaching experience and professional institution examinations (CEI). This edition includes new material and an extended exercise section for each of the fifteen chapters, as well as three appendices. The broad text ensures its suitability for undergraduate and postgraduate courses in which the mechanics of solids and structures form a part including: mechanical, aeronautical, civil, design and materials engineering.

Mechanics of Materials

Author: James Gere
Publisher: Cengage Learning
ISBN: 1111577730
Format: PDF, ePub
Download Now
The Eighth Edition of MECHANICS OF MATERIALS continues its tradition as one of the leading texts on the market. With its hallmark clarity and accuracy, this text develops student understanding along with analytical and problem-solving skills. The main topics include analysis and design of structural members subjected to tension, compression, torsion, bending, and more. The book includes more material than can be taught in a single course giving instructors the opportunity to select the topics they wish to cover while leaving any remaining material as a valuable student reference. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

The Behavior of Shells Composed of Isotropic and Composite Materials

Author: Jack R. Vinson
Publisher: Springer Science & Business Media
ISBN: 940158141X
Format: PDF, ePub
Download Now
Shell structures are used in all phases of structures, from space vehicles to deep submergence hulls, from nuclear reactors to domes on sport arenas and civic buildings. With new materials and manufacturing methods, curved thin walled structures are being used increasingly. This text is a graduate course in the theory of shells. It covers shells of isotropic materials, such as metal alloys and plastics, and shells of composite materials, such as fibre reinforced polymer, metal or ceramic matrix materials. It provides the essential information for an understanding of the underlying theory, and solution of some of the basic problems. It also provides a basis to study the voluminous shell literature. Beyond being primarily a textbook, it is intended also for self study by practising engineers who would like to learn more about the behaviour of shells. The book has two parts: Part I deals with shells of isotropic materials. In this part the mathematical formulations are introduced involving curvilinear coordinates. The techniques of solutions and resulting behavior is compared to planar thin walled isotropic structures such as plates and beams. Part II then treats the behavior of shells, involving anisotropic composite materials, so widely used today. The analysis involves the complications due to the many elastic constants, effects of transverse shear deformation, thermal thickening and offer effects arising from the properties of composite materials.