Method of Moments for 2D Scattering Problems

Author: Christophe Bourlier
Publisher: John Wiley & Sons
ISBN: 1118648684
Format: PDF, ePub, Mobi
Download Now
Electromagnetic wave scattering from randomly rough surfaces in the presence of scatterers is an active, interdisciplinary area of research with myriad practical applications in fields such as optics, acoustics, geoscience and remote sensing. In this book, the Method of Moments (MoM) is applied to compute the field scattered by scatterers such as canonical objects (cylinder or plate) or a randomly rough surface, and also by an object above or below a random rough surface. Since the problem is considered to be 2D, the integral equations (IEs) are scalar and only the TE (transverse electric) and TM (transverse magnetic) polarizations are addressed (no cross-polarizations occur). In Chapter 1, the MoM is applied to convert the IEs into a linear system, while Chapter 2 compares the MoM with the exact solution of the field scattered by a cylinder in free space, and with the Physical Optics (PO) approximation for the scattering from a plate in free space. Chapter 3 presents numerical results, obtained from the MoM, of the coherent and incoherent intensities scattered by a random rough surface and an object below a random rough surface. The final chapter presents the same results as in Chapter 3, but for an object above a random rough surface. In these last two chapters, the coupling between the two scatterers is also studied in detail by inverting the impedance matrix by blocks. Contents 1. Integral Equations for a Single Scatterer: Method of Moments and Rough Surfaces. 2. Validation of the Method of Moments for a Single Scatterer. 3. Scattering from Two Illuminated Scatterers. 4. Scattering from Two Scatterers Where Only One is Illuminated. Appendix. Matlab Codes. About the Authors Christophe Bourlier works at the IETR (Institut d’Electronique et de Télécommunications de Rennes) laboratory at Polytech Nantes (University of Nantes, France) as well as being a Researcher at the French National Center for Scientific Research (CNRS) on electromagnetic wave scattering from rough surfaces and objects for remote sensing applications and radar signatures. He is the author of more than 160 journal articles and conference papers. Nicolas Pinel is currently working as a Research Engineer at the IETR laboratory at Polytech Nantes and is about to join Alyotech Technologies in Rennes, France. His research interests are in the areas of radar and optical remote sensing, scattering and propagation. In particular, he works on asymptotic methods of electromagnetic wave scattering from random rough surfaces and layers. Gildas Kubické is in charge of the “Expertise in electroMagnetism and Computation” (EMC) laboratory at the DGA (Direction Générale de l’Armement), French Ministry of Defense, where he works in the field of radar signatures and electromagnetic stealth. His research interests include electromagnetic scattering and radar cross-section modeling.

The Method of Moments in Electromagnetics Second Edition

Author: Walton C. Gibson
Publisher: CRC Press
ISBN: 148223579X
Format: PDF, ePub, Docs
Download Now
Now Covers Dielectric Materials in Practical Electromagnetic Devices The Method of Moments in Electromagnetics, Second Edition explains the solution of electromagnetic integral equations via the method of moments (MOM). While the first edition exclusively focused on integral equations for conducting problems, this edition extends the integral equation framework to treat objects having conducting as well as dielectric parts. New to the Second Edition Expanded treatment of coupled surface integral equations for conducting and composite conducting/dielectric objects, including objects having multiple dielectric regions with interfaces and junctions Updated topics to reflect current technology More material on the calculation of near fields Reformatted equations and improved figures Providing a bridge between theory and software implementation, the book incorporates sufficient background material and offers nuts-and-bolts implementation details. It first derives a generalized set of surface integral equations that can be used to treat problems with conducting and dielectric regions. Subsequent chapters solve these integral equations for progressively more difficult problems involving thin wires, bodies of revolution, and two- and three-dimensional bodies. After reading this book, students and researchers will be well equipped to understand more advanced MOM topics.

Numerical Analysis for Electromagnetic Integral Equations

Author: Karl F. Warnick
Publisher: Artech House
ISBN: 1596933348
Format: PDF, ePub, Mobi
Download Now
This unique volume is the first book on integral equation-based methods that combines quantitative formulas for predicting numerical simulation accuracy together with rigorous error estimates and results for dozens of actual electromagnetics and wave propagation problems. You get the latest insights on accuracy-improving methods like regularization and error-increasing effects such as edge singularities and resonance, along with full details on how to determine mesh density, choice of basis functions, and other parameters needed to optimize any numerical simulation.

Civil Engineering Applications of Ground Penetrating Radar

Author: Andrea Benedetto
Publisher: Springer
ISBN: 3319048139
Format: PDF, Mobi
Download Now
This book, based on Transport and Urban Development COST Action TU1208, presents the most advanced applications of ground penetrating radar (GPR) in a civil engineering context, with documentation of instrumentation, methods and results. It explains clearly how GPR can be employed for the surveying of critical transport infrastructure, such as roads, pavements, bridges and tunnels and for the sensing and mapping of underground utilities and voids. Detailed attention is also devoted to use of GPR in the inspection of geological structures and of construction materials and structures, including reinforced concrete, steel reinforcing bars and pre/post-tensioned stressing ducts. Advanced methods for solution of electromagnetic scattering problems and new data processing techniques are also presented. Readers will come to appreciate that GPR is a safe, advanced, non destructive and noninvasive imaging technique that can be effectively used for the inspection of composite structures and the performance of diagnostics relevant to the entire life cycle of civil engineering works.

MMSE Based Algorithm for Joint Signal Detection Channel and Noise Variance Estimation for OFDM Systems

Author: Vincent Savaux
Publisher: John Wiley & Sons
ISBN: 1119007909
Format: PDF, Docs
Download Now
This book presents an algorithm for the detection of an orthogonal frequency division multiplexing (OFDM) signal in a cognitive radio context by means of a joint and iterative channel and noise estimation technique. Based on the minimum mean square criterion, it performs an accurate detection of a user in a frequency band, by achieving a quasi-optimal channel and noise variance estimation if the signal is present, and by estimating the noise level in the band if the signal is absent. Organized into three chapters, the first chapter provides the background against which the system model is presented, as well as some basics concerning the channel statistics and the transmission of an OFDM signal over a multipath channel. In Chapter 2, the proposed iterative algorithm for the noise variance and the channel estimation is detailed, and in Chapter 3, an application of the algorithm for the free-band detection is proposed. In both Chapters 2 and 3, the principle of the algorithm is presented in a simple way, and more elaborate developments are also provided. The different assumptions and assertions in the developments and the performance of the proposed method are validated through simulations, and compared to methods of the scientific literature

Knowledge Discovery and Data Mining

Author: Honghua Tan
Publisher: Springer Science & Business Media
ISBN: 364227708X
Format: PDF
Download Now
The volume includes a set of selected papers extended and revised from the 4th International conference on Knowledge Discovery and Data Mining, March 1-2, 2011, Macau, Chin. This Volume is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of knowledge discovery and data mining and learning to disseminate their latest research results and exchange views on the future research directions of these fields. 108 high-quality papers are included in the volume.

Essentials of Computational Electromagnetics

Author: Xin-Qing Sheng
Publisher: John Wiley & Sons
ISBN: 0470829656
Format: PDF, Mobi
Download Now
Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifying practical issues, such as how to convert discretized formulations into computer programs, and the numerical characteristics of the computer programs. In this book, the authors elaborate the above three methods in CEM using practical case studies, explaining their own research experiences along with a review of current literature. A full analysis is provided for typical cases, including characteristics of numerical methods, helping beginners to develop a quick and deep understanding of the essentials of CEM. Outlines practical issues, such as how to convert discretized formulations into computer programs Gives typical computer programs and their numerical characteristics along with line by line explanations of programs Uses practical examples from the authors' own work as well as in the current literature Includes exercise problems to give readers a better understanding of the material Introduces the available commercial software and their limitations This book is intended for graduate-level students in antennas and propagation, microwaves, microelectronics, and electromagnetics. This text can also be used by researchers in electrical and electronic engineering, and software developers interested in writing their own code or understanding the detailed workings of code. Companion website for the book: www.wiley.com/go/sheng/cem

Electromagnetic Fields in Mechatronics Electrical and Electronic Engineering

Author: A. Krawczyk
Publisher: IOS Press
ISBN: 1607501821
Format: PDF, ePub, Mobi
Download Now
More and more researchers engage into investigation of electromagnetic applications, especially these connected with mechatronics, information technologies, medicine, biology and material sciences. It is readily seen when looking at the content of the book that computational techniques, which were under development during the last three decades and are still being developed, serve as good tools for discovering new electromagnetic phenomena. It means that the field of computational electromagnetics belongs to an application area rather than to a research area. This publication aims at joining theory and practice, thus the majority of papers are deeply rooted in engineering problems, being simultaneously of high theoretical level. The editors hope to touch the heart of the matter in electromagnetism. The book focuses on the following issues: Computational Electromagnetics; Electromagnetic Engineering; Coupled Field and Special Applications; Micro- and Special Devices; Bioelectromagnetics and Electromagnetic Hazard; and Magnetic Material Modeling.

Computational Electromagnetics for RF and Microwave Engineering

Author: David B. Davidson
Publisher: Cambridge University Press
ISBN: 1139492810
Format: PDF, ePub, Mobi
Download Now
This hands-on introduction to computational electromagnetics (CEM) links theoretical coverage of the three key methods - the FDTD, MoM and FEM - to open source MATLAB codes (freely available online) in 1D, 2D and 3D, together with many practical hints and tips gleaned from the author's 25 years of experience in the field. Updated and extensively revised, this second edition includes a new chapter on 1D FEM analysis, and extended 3D treatments of the FDTD, MoM and FEM, with entirely new 3D MATLAB codes. Coverage of higher-order finite elements in 1D, 2D and 3D is also provided, with supporting code, in addition to a detailed 1D example of the FDTD from a FEM perspective. With running examples through the book and end-of-chapter problems to aid understanding, this is ideal for professional engineers and senior undergraduate/graduate students who need to master CEM and avoid common pitfalls in writing code and using existing software.

Generalized Multipole Techniques for Electromagnetic and Light Scattering

Author: T. Wriedt
Publisher: Elsevier
ISBN: 9780080532370
Format: PDF, ePub, Docs
Download Now
This book is an edited volume of nine papers covering the different variants of the generalized multipole techniques (GMT). The papers were presented at the recent 3rd Workshop on Electromagnetics and Light Scattering - Theory and Applications, which focused on current GMT methods. These include the multiple multipole method (MMP), the discrete sources method (DSM), Yasuura's method, method of auxiliary sources and null-field method with discrete sources. Each paper presents a full theoretical description as well as some applications of the method in electrical engineering and optics. It also includes both 2D and 3D methods and other applications developed in the former Soviet Union and Japan.