Microflows and Nanoflows

Author: George Karniadakis
Publisher: Springer Science & Business Media
ISBN: 0387286764
Format: PDF, Kindle
Download Now
Subject area has witnessed explosive growth during the last decade and the technology is progressing at an astronomical rate. Previous edition was first to focus exclusively on flow physics within microdevices. It sold over 900 copies in North America since 11/01. New edition is 40 percent longer, with four new chapters on recent topics including Nanofluidics.

Microflows and Nanoflows

Author: George Em Karniadakis
Publisher: Springer
ISBN: 9780387501505
Format: PDF, ePub
Download Now
Subject area has witnessed explosive growth during the last decade and the technology is progressing at an astronomical rate. Previous edition was first to focus exclusively on flow physics within microdevices. It sold over 900 copies in North America since 11/01. New edition is 40 percent longer, with four new chapters on recent topics including Nanofluidics.

Non Newtonian Fluid Mechanics and Complex Flows

Author: Angiolo Farina
Publisher: Springer
ISBN: 3319747967
Format: PDF, ePub, Docs
Download Now
This book presents a series of challenging mathematical problems which arise in the modeling of Non-Newtonian fluid dynamics. It focuses in particular on the mathematical and physical modeling of a variety of contemporary problems, and provides some results. The flow properties of Non-Newtonian fluids differ in many ways from those of Newtonian fluids. Many biological fluids (blood, for instance) exhibit a non-Newtonian behavior, as do many naturally occurring or technologically relevant fluids such as molten polymers, oil, mud, lava, salt solutions, paint, and so on. The term "complex flows" usually refers to those fluids presenting an "internal structure" (fluid mixtures, solutions, multiphase flows, and so on). Modern research on complex flows has increased considerably in recent years due to the many biological and industrial applications.

Transport and Mixing in Laminar Flows

Author: Roman Grigoriev
Publisher: John Wiley & Sons
ISBN: 3527639756
Format: PDF, ePub, Docs
Download Now
This book provides readers from academia and industry with an up-to-date overview of important advances in the field, dealing with such fundamental fluid mechanics problems as nonlinear transport phenomena and optimal control of mixing at the micro- and nanoscale. The editors provide both in-depth knowledge of the topic as well as vast experience in guiding an expert team of authors. The review style articles offer a coherent view of the micromixing methods, resulting in a much-needed synopsis of the theoretical models needed to direct experimental research and establish engineering principles for future applications. Since these processes are governed by nonlinear phenomena, this book will appeal to readers from both communities: fluid mechanics and nonlinear dynamics.

Nondestructive Testing of Food Quality

Author: Joseph Irudayaraj
Publisher: John Wiley & Sons
ISBN: 0470388285
Format: PDF, Mobi
Download Now
The expert contributors to Nondestructive Testing of Food Quality clearly explain present industry advances and how to turn available instrumentation into valuable assets. Readers learn how the competencies of product knowledge, process understanding, instrumentation, principles of sensing, process control, and analytical methodology are required to turn an application into success. The broad-based coverage of topics addresses the most dominant sensor technologies keeping in mind the research initiatives advancing these technologies not only in food but also in the pharmaceutical sectors. Coverage includes: ultrasound, near infrared spectroscopy, mid-infrared spectroscopy, Raman spectroscopy, hyperspectral imaging systems, magnetic resonance imaging, electronic nose, z-nose, biosensors, microwave absorption, and nanoparticles and colloids as sensors.

Nanophysics Nanomaterials Interface Studies and Applications

Author: Olena Fesenko
Publisher: Springer
ISBN: 3319564226
Format: PDF, ePub, Mobi
Download Now
This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features selected peer-reviewed contributions from participants in the 4th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2016) held in Lviv, Ukraine on August 24-27, 2016. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv (Ukraine), University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications.

Environmental Degradation of Advanced and Traditional Engineering Materials

Author: Lloyd H. Hihara
Publisher: CRC Press
ISBN: 1439819262
Format: PDF
Download Now
One of the main, ongoing challenges for any engineering enterprise is that systems are built of materials subject to environmental degradation. Whether working with an airframe, integrated circuit, bridge, prosthetic device, or implantable drug-delivery system, understanding the chemical stability of materials remains a key element in determining their useful life. Environmental Degradation of Advanced and Traditional Engineering Materials is a monumental work for the field, providing comprehensive coverage of the environmental impacts on the full breadth of materials used for engineering infrastructure, buildings, machines, and components. The book discusses fundamental degradation processes and presents examples of degradation under various environmental conditions. Each chapter presents the basic properties of the class of material, followed by detailed characteristics of degradation, guidelines on how to protect against corrosion, and a description of testing procedures. A complete, self-contained industrial reference guide, this valuable resource is designed for students and professionals interested in the development of deterioration-resistant technological systems constructed with metallurgical, polymeric, ceramic, and natural materials.

Reduced Order Methods for Modeling and Computational Reduction

Author: Alfio Quarteroni
Publisher: Springer
ISBN: 3319020900
Format: PDF, ePub
Download Now
This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics. Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems.

Mathematics in Medicine and the Life Sciences

Author: Frank C. Hoppensteadt
Publisher: Springer Science & Business Media
ISBN: 1475741316
Format: PDF, Kindle
Download Now
The aim of this book is to introduce the subject of mathematical modeling in the life sciences. It is intended for students of mathematics, the physical sciences, and engineering who are curious about biology. Additionally, it will be useful to students of the life sciences and medicine who are unsatisfied with mere description and who seek an understanding of biological mechanism and dynamics through the use of mathematics. The book will be particularly useful to premedical students, because it will introduce them not only to a collection of mathematical methods but also to an assortment of phenomena involving genetics, epidemics, and the physiology of the heart, lung, and kidney. Because of its introductory character, mathematical prerequisites are kept to a minimum; they involve only what is usually covered in the first semester of a calculus sequence. The authors have drawn on their extensive experience as modelers to select examples which are simple enough to be understood at this elementary level and yet realistic enough to capture the essence of significant biological phenomena drawn from the areas of population dynamics and physiology. Because the models presented are realistic, the book can serve not only as an introduction to mathematical methods but also as a mathematical introduction to the biological material itself. For the student, who enjoys mathematics, such an introduction will be far more stimulating and satisfying than the purely descriptive approach that is traditional in the biological sciences.