Microfluid Mechanics

Author: William Liou
Publisher: McGraw Hill Professional
ISBN: 0071588884
Format: PDF
Download Now
The rapid progress in fabricating and utilizing microelectromechanical (MEMS) systems during the last decade is not matched by corresponding understanding of the unconventional fluid flow involved in the operation and manufacture of these small devices. Providing such understanding is crucial to designing, optimizing, fabricating and operating improved MEMS devices. Microfluid Mechanics: Principles and Modeling is a rigorous reference that begins with the fundamental principles governing microfluid mechanics and progresses to more complex mathematical models, which will allow research engineers to better measure and predict reactions of gaseous and liquids in microenvironments.

Nanophysics Nanomaterials Interface Studies and Applications

Author: Olena Fesenko
Publisher: Springer
ISBN: 3319564226
Format: PDF, Docs
Download Now
This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features selected peer-reviewed contributions from participants in the 4th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2016) held in Lviv, Ukraine on August 24-27, 2016. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv (Ukraine), University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications.

Polymer Nanocomposites

Author: Joseph Koo
Publisher: McGraw Hill Professional
ISBN: 9780071492041
Format: PDF, ePub, Docs
Download Now
Understand the principles, applications, and limitations of a cutting-edge material Based on the author's 26 years of experience in the field of Nanotechnology, this reference offers researchers and materials scientists a complete reference to the physical concepts, techniques, applications and principles underlying one of the most researched materials. Keeps you abreast of the latest trends, developments, and commercial applications

Microfluidic Cell Culture Systems

Author: Jeffrey T Borenstein
Publisher: Elsevier
ISBN: 0128136723
Format: PDF
Download Now
Techniques for microfabricating intricate microfluidic structures that mimic the microenvironment of tissues and organs, combined with the development of biomaterials with carefully engineered surface properties, have enabled new paradigms in and cell culture-based models for human diseases. The dimensions of surface features and fluidic channels made accessible by these techniques are well-suited to the size scale of biological cells. Microfluidic Cell Culture Systems applies design and experimental techniques used in in microfluidics, and cell culture technologies to organ-on-chip systems. This book is intended to serve as a professional reference, providing a practical guide to design and fabrication of microfluidic systems and biomaterials for use in cell culture systems and human organ models. The book covers topics ranging from academic first principles of microfluidic design, to clinical translation strategies for cell culture protocols. The goal is to help professionals coming from an engineering background to adapt their expertise for use in cell culture and organ models applications, and likewise to help biologists to design and employ microfluidic technologies in their cell culture systems. This 2nd edition contains new material that strengthens the focus on in vitro models useful for drug discovery and development. One new chapter reviews liver organ models from an industry perspective, while others cover new technologies for scaling these models and for multi-organ systems. Other new chapters highlight the development of organ models and systems for specific applications in disease modeling and drug safety. Previous chapters have been revised to reflect the latest advances. Provides design and operation methodology for microfluidic and microfabricated materials and devices for organ-on-chip disease and safety models. This is a rapidly expanding field that will continue to grow along with advances in cell biology and microfluidics technologies. Comprehensively covers strategies and techniques ranging from academic first principles to industrial scale-up approaches. Readers will gain insight into cell-material interactions, microfluidic flow, and design principles. Offers three fundamental types of information: 1) design principles, 2) operation techniques, and 3) background information/perspectives. The book is carefully designed to strike a balance between these three areas, so it will be of use to a broad range of readers with different technical interests and educational levels.

Microfluidics and Nanofluidics Handbook

Author: Sushanta K. Mitra
Publisher: CRC Press
ISBN: 1439816778
Format: PDF
Download Now
The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Cell Lysis Techniques in Lab-on-a-Chip Technology Electrodics in Electrochemical Energy Conversion Systems: Microstructure and Pore-Scale Transport Microscale Gas Flow Dynamics and Molecular Models for Gas Flow and Heat Transfer Microscopic Hemorheology and Hemodynamics Covering physics and transport phenomena along with life sciences and related applications, Volume One: Chemistry, Physics, and Life Science Principles provides readers with the fundamental science background that is required for the study of microfluidics and nanofluidics. Both volumes include as much interdisciplinary knowledge as possible to reflect the inherent nature of this area, valuable to students and practitioners.

Essentials of Micro and Nanofluidics

Author: A. Terrence Conlisk
Publisher: Cambridge University Press
ISBN: 0521881684
Format: PDF, ePub, Mobi
Download Now
This book introduces students to the basic physical principles to analyze fluid flow in micro and nano-size devices. This is the first book that unifies the thermal sciences with electrostatics and electrokinetics and colloid science; electrochemistry; and molecular biology. The author discusses key concepts and principles, such as the essentials of viscous flows, an introduction to electrochemistry, heat and mass transfer phenomena, elements of molecular and cell biology, and much more. This textbook presents state-of-the-art analytical and computational approaches to problems in all of these areas, especially electrokinetic flows, and gives examples of the use of these disciplines to design devices used for rapid molecular analysis, biochemical sensing, drug delivery, DNA analysis, the design of an artificial kidney, and other transport phenomena. This textbook includes exercise problems, modern examples of the applications of these sciences, and a solutions manual available to qualified instructors.

Theoretical Microfluidics

Author: Henrik Bruus
Publisher: Oxford University Press on Demand
ISBN: 0199235082
Format: PDF, ePub, Mobi
Download Now
Covering fluid dynamics and how to control flows and solutions in microsystems with various external fields, this text contains a broad range of exercises which enable students to confront real-world problems.

Microfluidic Devices in Nanotechnology

Author: Challa S. S. R. Kumar
Publisher: John Wiley & Sons
ISBN: 9781118029220
Format: PDF, Kindle
Download Now
Nanotechnology, especially microfabrication, has been affecting every facet of traditional scientific disciplines. The first book on the application of microfluidic reactors in nanotechnology, Microfluidic Devices in Nanotechnology provides the fundamental aspects and potential applications of microfluidic devices, the physics of microfluids, specific methods of chemical synthesis of nanomaterials, and more. As the first book to discuss the unique properties and capabilities of these nanomaterials in the miniaturization of devices, this text serves as a one-stop resource for nanoscientists interested in microdevices.

MEMS and Nanotechnology Volume 2

Author: Tom Proulx
Publisher: Springer Science & Business Media
ISBN: 1441988254
Format: PDF
Download Now
This the second volume of six from the Annual Conference of the Society for Experimental Mechanics, 2010, brings together 40 chapters on Microelectromechanical Systems and Nanotechnology. It presents early findings from experimental and computational investigations on MEMS and Nanotechnology including contributions on Nanomechanical Standards, Magneto-mechanical MEMS Sensors, Piezoelectric MEMS for Energy Harvesting, and Linear and Nonlinear Mass Sensing.

Quantum Well Laser Array Packaging

Author: Jens Tomm
Publisher: McGraw Hill Professional
ISBN: 0071460322
Format: PDF, ePub
Download Now
Quantum-well lasers offer the promise of lightning-fast data communications - 10-to-100 times faster than broadband. While the architecture for these devices already exists, they suffer from material packaging problems. This book addresses this critical issue. It offers screening and packaging techniques useful for researchers.