Dynamic Modeling and Control of Engineering Systems

Author: Bohdan T. Kulakowski
Publisher: Cambridge University Press
ISBN: 113946423X
Format: PDF, ePub, Docs
Download Now
This textbook is ideal for a course in engineering systems dynamics and controls. The work is a comprehensive treatment of the analysis of lumped parameter physical systems. Starting with a discussion of mathematical models in general, and ordinary differential equations, the book covers input/output and state space models, computer simulation and modeling methods and techniques in mechanical, electrical, thermal and fluid domains. Frequency domain methods, transfer functions and frequency response are covered in detail. The book concludes with a treatment of stability, feedback control (PID, lead-lag, root locus) and an introduction to discrete time systems. This new edition features many new and expanded sections on such topics as: solving stiff systems, operational amplifiers, electrohydraulic servovalves, using Matlab with transfer functions, using Matlab with frequency response, Matlab tutorial and an expanded Simulink tutorial. The work has 40% more end-of-chapter exercises and 30% more examples.

Modeling and Control of Engineering Systems

Author: Clarence W. de Silva
Publisher: CRC Press
ISBN: 1420076876
Format: PDF, ePub, Mobi
Download Now
Developed from the author’s academic and industrial experiences, Modeling and Control of Engineering Systems provides a unified treatment of the modeling of mechanical, electrical, fluid, and thermal systems and then systematically covers conventional, advanced, and intelligent control, instrumentation, experimentation, and design. It includes theory, analytical techniques, popular computer tools, simulation details, and applications. Overcoming the deficiencies of other modeling and control books, this text relates the model to the physical system and addresses why a particular control technique is suitable for controlling the system. Although MATLAB®, Simulink®, and LabVIEWTM are used, the author fully explains the fundamentals and analytical basis behind the methods, the choice of proper tools to analyze a given problem, the ways to interpret and validate the results, and the limitations of the software tools. This approach enables readers to thoroughly grasp the core foundation of the subject and understand how to apply the concepts in practice. Control ensures accurate operation of a system. Proper control of an engineering system requires a basic understanding and a suitable representation (model) of the system. This book builds up expertise in modeling and control so that readers can further their analytical skills in hands-on settings.

Marine Systems Identification Modeling and Control

Author: Tony Roskilly
Publisher: Butterworth-Heinemann
ISBN: 0081000103
Format: PDF, Mobi
Download Now
Marine Systems Identification, Modeling and Control is a concise, stand-alone resource covering the theory and practice of dynamic systems and control for marine engineering students and professionals. Developed from a distance learning CPD course on marine control taught by the authors, the book presents the essentials of the subject, including system representation and transfer, feedback control and closed loop stability. Simulation code and worked examples are provided for both Scilab and MATLAB, making it suitable for both those without access to expensive software and those using MATLAB in a professional setting. This title considers the key topics without superfluous detail and is illustrated with marine industry examples. Concise and practical, covering the relevant theory without excessive detail Industry-specific examples and applications for marine engineering students and professionals Clearly presents key topics of the subject, including system representation and transfer, feedback control and closed loop stability, making it ideal for self-study or reference Simulation code and worked examples using Scilab and MATLAB provided on the book’s companion website

Modeling and Control of Complex Systems

Author: Petros A. Ioannou
Publisher: CRC Press
ISBN: 9780849379864
Format: PDF, ePub
Download Now
Comprehension of complex systems comes from an understanding of not only the behavior of constituent elements but how they act together to form the behavior of the whole. However, given the multidisciplinary nature of complex systems, the scattering of information across different areas creates a chaotic situation for those trying to understand possible solutions and applications. Modeling and Control of Complex Systems brings together a number of research experts to present some of their latest approaches and future research directions in a language accessible to system theorists. Contributors discuss complex systems such as networks for modeling and control of civil structures, vehicles, robots, biomedical systems, fluid flow systems, and home automation systems. Each chapter provides theoretical and methodological descriptions of a specific application in the control of complex systems, including congestion control in computer networks, autonomous multi-robot docking systems, modeling and control in cancer genomics, and backstepping controllers for stabilization of turbulent flow PDEs. With this unique reference, you will discover how complexity is dealt with in different disciplines and learn about the latest methodologies, which are applicable to your own specialty. The balanced mix of theory and simulation presented by Modeling and Control of Complex Systems supplies a strong vehicle for enlarging your knowledge base a fueling future advances and incredible breakthroughs.

Modeling and Control of Vibration in Mechanical Systems

Author: Chunling Du
Publisher: CRC Press
ISBN: 9781439817995
Format: PDF, ePub, Mobi
Download Now
From the ox carts and pottery wheels the spacecrafts and disk drives, efficiency and quality has always been dependent on the engineer’s ability to anticipate and control the effects of vibration. And while progress in negating the noise, wear, and inefficiency caused by vibration has been made, more is needed. Modeling and Control of Vibration in Mechanical Systems answers the essential needs of practitioners in systems and control with the most comprehensive resource available on the subject. Written as a reference for those working in high precision systems, this uniquely accessible volume: Differentiates between kinds of vibration and their various characteristics and effects Offers a close-up look at mechanical actuation systems that are achieving remarkably high precision positioning performance Includes techniques for rejecting vibrations of different frequency ranges Covers the theoretical developments and principles of control design with detail elaborate enough that readers will be able to apply the techniques with the help of MATLAB® Details a wealth of practical working examples as well as a number of simulation and experimental results with comprehensive evaluations The modern world’s ever-growing spectra of sophisticated engineering systems such as hard disk drives, aeronautic systems, and manufacturing systems have little tolerance for unanticipated vibration of even the slightest magnitude. Accordingly, vibration control continues to draw intensive focus from top control engineers and modelers. This resource demonstrates the remarkable results of that focus to date, and most importantly gives today’s researchers the technology that they need to build upon into the future. Chunling Du is currently researching modeling and advanced servo control of hard disk drives at the Data Storage Institute in Singapore. Lihua Xie is the Director of the Centre for Intelligent Machines and a professor at Nanyang Technological University in Singapore.

Efficient Modeling and Control of Large Scale Systems

Author: Javad Mohammadpour
Publisher: Springer Science & Business Media
ISBN: 9781441957573
Format: PDF, ePub, Mobi
Download Now
Complexity and dynamic order of controlled engineering systems is constantly increasing. Complex large scale systems (where "large" reflects the system’s order and not necessarily its physical size) appear in many engineering fields, such as micro-electromechanics, manufacturing, aerospace, civil engineering and power engineering. Modeling of these systems often result in very high-order models imposing great challenges to the analysis, design and control problems. "Efficient Modeling and Control of Large-Scale Systems" compiles state-of-the-art contributions on recent analytical and computational methods for addressing model reduction, performance analysis and feedback control design for such systems. Also addressed at length are new theoretical developments, novel computational approaches and illustrative applications to various fields, along with: - An interdisciplinary focus emphasizing methods and approaches that can be commonly applied in various engineering fields -Examinations of applications in various fields including micro-electromechanical systems (MEMS), manufacturing processes, power networks, traffic control "Efficient Modeling and Control of Large-Scale Systems" is an ideal volume for engineers and researchers working in the fields of control and dynamic systems.

System Modeling and Control with Resource Oriented Petri Nets

Author: MengChu Zhou
Publisher: CRC Press
ISBN: 9781439808856
Format: PDF, Docs
Download Now
Petri nets are widely used in modeling, analysis, and control of discrete event systems arising from manufacturing, transportation, computer and communication networks, and web service systems. However, Petri net models for practical systems can be very large, making it difficult to apply such models to real-life problems. System Modeling and Control with Resource-Oriented Petri Nets introduces a new resource-oriented Petri net (ROPN) model that was developed by the authors. Not only does it successfully reduce model size, but it also offers improvements that facilitate effective modeling, analysis, and control of automated and reconfigurable manufacturing systems. Presenting the latest research in this novel approach, this cutting-edge volume provides proven theories and methodologies for implementing cost and time-saving improvements to contemporary manufacturing systems. It provides effective tools for deadlock avoidance—deadlock-free routing and deadlock-free scheduling. The authors supply simple and complex industrial manufacturing system examples to illustrate time-tested concepts, theories, and approaches for solving real-life application problems. Written in a clear and concise manner, the text covers applications to automated and reconfigurable manufacturing systems, automated guided vehicle (AGV) systems, semiconductor manufacturing systems, and flexible assembly systems. Explaining complex concepts in a manner that is easy to understand, the authors provide the understanding and tools needed for more effective modeling, analysis, performance evaluation, control, and scheduling of engineering processes that will lead to more flexible and efficient manufacturing systems.

Modeling and Control of Complex Physical Systems

Author: Vincent Duindam
Publisher: Springer Science & Business Media
ISBN: 9783642031960
Format: PDF, Mobi
Download Now
Energy exchange is a major foundation of the dynamics of physical systems, and, hence, in the study of complex multi-domain systems, methodologies that explicitly describe the topology of energy exchanges are instrumental in structuring the modeling and the computation of the system's dynamics and its control. This book is the outcome of the European Project "Geoplex" (FP5 IST-2001-34166) that studied and extended such system modeling and control methodologies. This unique book starts from the basic concept of port-based modeling, and extends it to port-Hamiltonian systems. This generic paradigm is applied to various physical domains, showing its power and unifying flexibility for real multi-domain systems.

Modeling of Dynamic Systems with Engineering Applications

Author: Clarence W. de Silva
Publisher: CRC Press
ISBN: 1498798683
Format: PDF
Download Now
MODELING OF DYNAMIC SYSTEMS takes a unique, up-to-date approach to systems dynamics and related controls coverage for undergraduate students and practicing engineers. It focuses on the model development of engineering problems rather than response analysis and simulation once a model is available, though these are also covered. Linear graphing and bond graph approaches are both discussed, and computational tools are integrated thoughout. Electrical, mechanical, fluid, and thermal domains are covered, as are problems of multiple domains (mixed systems); the unified and integrated approaches taken are rapidly becoming the standard in the modeling of mechatronic engineering systems.

Modelling and Simulation of Integrated Systems in Engineering

Author: D J Murray-Smith
Publisher: Elsevier
ISBN: 0857096052
Format: PDF, ePub, Docs
Download Now
This book places particular emphasis on issues of model quality and ideas of model testing and validation. Mathematical and computer-based models provide a foundation for explaining complex behaviour, decision-making, engineering design and for real-time simulators for research and training. Many engineering design techniques depend on suitable models, assessment of the adequacy of a given model for an intended application is therefore critically important. Generic model structures and dependable libraries of sub-models that can be applied repeatedly are increasingly important. Applications are drawn from the fields of mechanical, aeronautical and control engineering, and involve non-linear lumped-parameter models described by ordinary differential equations. Focuses on issues of model quality and the suitability of a given model for a specific application Multidisciplinary problems within engineering feature strongly in the applications The development and testing of nonlinear dynamic models is given very strong emphasis