Modeling and Simulation of Heterogeneous Catalytic Processes

Author:
Publisher: Academic Press
ISBN: 012800455X
Format: PDF, ePub, Docs
Download Now
Heterogeneous catalysis and mathematical modeling are essential components of the continuing search for better utilization of raw materials and energy, with reduced impact on the environment. Numerical modeling of chemical systems has progressed rapidly due to increases in computer power, and is used extensively for analysis, design and development of catalytic reactors and processes. This book presents reviews of the state-of-the-art in modeling of heterogeneous catalytic reactors and processes. Reviews by leading authorities in the respective areas Up-to-date reviews of latest techniques in modeling of catalytic processes Mix of US and European authors, as well as academic/industrial/research institute perspectives Connections between computation and experimental methods in some of the chapters

Spatially Resolved Operando Measurements in Heterogeneous Catalytic Reactors

Author:
Publisher: Academic Press
ISBN: 012812590X
Format: PDF, Docs
Download Now
Spatially Resolved Operando Measurements in Heterogeneous Catalytic Reactors, Volume 50, presents the latest on these essential components in the continuing search for better utilization of raw materials and energy that reduces impact on the environment. This latest release includes valuable chapters that present tactics on Understanding the performance of automotive catalysts via spatial resolution of reactions inside honeycomb monoliths, Operando spectroscopy in catalytic reactors, Spatio-temporal phenomena in monolithic reactors measured by combined spatially-resolved mass spectrometry and optical frequency domain reflectrometry, and In-situ spatially resolved techniques for the investigation of packed bed catalytic reactors: Current status and future outlook. This series presents the latest reviews of the state-of-the-art of in heterogeneous catalytic reactors and processes. Contains reviews by leading authorities in their respective areas Presents up-to-date reviews of the latest techniques in the modeling of catalytic processes Includes a broad mix of US and European authors, as well as academic, industrial and research institute perspectives Provides discussions on the connections between computation and experimental methods

Modeling and Simulation of Heterogeneous Catalytic Reactions

Author: Olaf Deutschmann
Publisher: John Wiley & Sons
ISBN: 3527639888
Format: PDF, Docs
Download Now
The Nobel Prize in Chemistry 2007 awarded to Gerhard Ertl for his groundbreaking studies in surface chemistry highlighted the importance of heterogeneous catalysis not only for modern chemical industry but also for environmental protection. Heterogeneous catalysis is seen as one of the key technologies which could solve the challenges associated with the increasing diversification of raw materials and energy sources. It is the decisive step in most chemical industry processes, a major method of reducing pollutant emissions from mobile sources and is present in fuel cells to produce electricity. The increasing power of computers over the last decades has led to modeling and numerical simulation becoming valuable tools in heterogeneous catalysis. This book covers many aspects, from the state-of-the-art in modeling and simulations of heterogeneous catalytic reactions on a molecular level to heterogeneous catalytic reactions from an engineering perspective. This first book on the topic conveys expert knowledge from surface science to both chemists and engineers interested in heterogeneous catalysis. The well-known and international authors comprehensively present many aspects of the wide bridge between surface science and catalytic technologies, including DFT calculations, reaction dynamics on surfaces, Monte Carlo simulations, heterogeneous reaction rates, reactions in porous media, electro-catalytic reactions, technical reactors, and perspectives of chemical and automobile industry on modeling heterogeneous catalysis. The result is a one-stop reference for theoretical and physical chemists, catalysis researchers, materials scientists, chemical engineers, and chemists in industry who would like to broaden their horizon and get a substantial overview on the different aspects of modeling and simulation of heterogeneous catalytic reactions.

Advances in Chemical Engineering

Author: Guy B. Marin
Publisher: Elsevier
ISBN: 9780080545875
Format: PDF, ePub, Docs
Download Now
Understanding and modeling the kinetics of chemical reactions is crucial to any research and development effort aimed at process optimization and innovation. This volume of Advances in Chemical Engineering provides four complementary points of view. It reflects state-of-the-art developments as well as views on the way to proceed by reporting on the efforts of a representative, sample of research and development groups. A first contribution by W.H. Green Jr. sets the scene. The author advocates a paradigm shift in chemical kinetics from "postdictive" to predictive models. The contribution from the Politecnico di Milano reports on the tremendous experience accumulated over the years in the field of steam cracking, one of the largest scale production processes of the petrochemical industry. The Russian school of chemical kinetics is represented by a chapter on oxidation of alkanes, this contribution addresses more "philosophical" issues. The last chapter gives an indication of the state-of-the-art in an industrial environment. Provides original reviews Presents leading chemical engineers as authors Reviews state-of-the-art developments

Chemical Engineering for Renewables Conversion

Author:
Publisher: Academic Press
ISBN: 0123865069
Format: PDF, Mobi
Download Now
Biomass has received considerable attention as a sustainable feedstock that can replace diminishing fossil fuels for the production of energy and chemicals. At the present moment in the oil refining, petrochemical and chemical industry, after fractionation of crude oil, various fractions are upgraded either to fuels or functionalized to produce intermediates and specialty chemicals. An analogous concept of biorefining is based on the utilization of biomass as a renewable source of carbon, which could be transformed to valuable chemicals. Although various aspects of biomass transformations are frequently discussed in the literature, chemical engineering aspects of such transformations are commonly not considered. The aim of the present book is to fill this void. Updates and informs the reader on the latest research findings using original reviews Written by leading industry experts and scholars Reviews and analyzes developments in the field

Process Modeling and Simulation for Chemical Engineers

Author: Simant R. Upreti
Publisher: John Wiley & Sons
ISBN: 111891466X
Format: PDF, ePub, Docs
Download Now
This book provides a rigorous treatment of the fundamental concepts and techniques involved in process modeling and simulation. The book allows the reader to: (i) Get a solid grasp of “under-the-hood” mathematical results (ii) Develop models of sophisticated processes (iii) Transform models to different geometries and domains as appropriate (iv) Utilize various model simplification techniques (v) Learn simple and effective computational methods for model simulation (vi) Intensify the effectiveness of their research Modeling and Simulation for Chemical Engineers: Theory and Practice begins with an introduction to the terminology of process modeling and simulation. Chapters 2 and 3 cover fundamental and constitutive relations, while Chapter 4 on model formulation builds on these relations. Chapters 5 and 6 introduce the advanced techniques of model transformation and simplification. Chapter 7 deals with model simulation, and the final chapter reviews important mathematical concepts. Presented in a methodical, systematic way, this book is suitable as a self-study guide or as a graduate reference, and includes examples, schematics and diagrams to enrich understanding. End of chapter problems (with solutions and computer software available online) are designed to further stimulate readers to apply the newly-learned concepts. End of chapter problems (with solutions and computer software available online www.wiley.com/go/upreti/pms_for_chemical_engineers) are designed to further stimulate readers to apply the newly learned concepts.

Advanced Data Analysis and Modelling in Chemical Engineering

Author: Denis Constales
Publisher: Elsevier
ISBN: 0444594841
Format: PDF
Download Now
Advanced Data Analysis and Modeling in Chemical Engineering provides the mathematical foundations of different areas of chemical engineering and describes typical applications. The book presents the key areas of chemical engineering, their mathematical foundations, and corresponding modeling techniques. Modern industrial production is based on solid scientific methods, many of which are part of chemical engineering. To produce new substances or materials, engineers must devise special reactors and procedures, while also observing stringent safety requirements and striving to optimize the efficiency jointly in economic and ecological terms. In chemical engineering, mathematical methods are considered to be driving forces of many innovations in material design and process development. Presents the main mathematical problems and models of chemical engineering and provides the reader with contemporary methods and tools to solve them Summarizes in a clear and straightforward way, the contemporary trends in the interaction between mathematics and chemical engineering vital to chemical engineers in their daily work Includes classical analytical methods, computational methods, and methods of symbolic computation Covers the latest cutting edge computational methods, like symbolic computational methods

Green Chemical Engineering

Author: S. Suresh
Publisher: CRC Press
ISBN: 1466558857
Format: PDF
Download Now
While chemical products are useful in their own right—they address the demands and needs of the masses—they also drain our natural resources and generate unwanted pollution. Green Chemical Engineering: An Introduction to Catalysis, Kinetics, and Chemical Processes encourages minimized use of non-renewable natural resources and fosters maximized pollution prevention. This text stresses the importance of developing processes that are environmentally friendly and incorporate the role of green chemistry and reaction engineering in designing these processes. Focused on practical application rather than theory, the book integrates chemical reaction engineering and green chemical engineering, and is divided into two sections. The first half of the book covers the basic principles of chemical reaction engineering and reactor design, while the second half of the book explores topics on green reactors, green catalysis, and green processes. The authors mix in elaborate illustrations along with important developments, practical applications, and recent case studies. They also include numerous exercises, examples, and problems covering the various concepts of reaction engineering addressed in this book, and provide MATLAB® software used for developing computer codes and solving a number of reaction engineering problems. Consisting of six chapters organized into two sections, this text: Covers the basic principles of chemical kinetics and catalysis Gives a brief introduction to classification and the various types of chemical reactors Discusses in detail the differential and integral methods of analysis of rate equations for different types of reactions Presents the development of rate equations for solid catalyzed reactions and enzyme catalyzed biochemical reactions Explains methods for estimation of kinetic parameters from batch reactor data Details topics on homogeneous reactors Includes graphical procedures for the design of multiple reactors Contains topics on heterogeneous reactors including catalytic and non-catalytic reactors Reviews various models for non-catalytic gas–solid and gas–liquid reactions Introduces global rate equations and explicit design equations for a variety of non-catalytic reactors Gives an overview of novel green reactors and the application of CFD technique in the modeling of green reactors Offers detailed discussions of a number of novel reactors Provides a brief introduction to CFD and the application of CFD Highlights the development of a green catalytic process and the application of a green catalyst in the treatment of industrial effluent Comprehensive and thorough in its coverage, Green Chemical Engineering: An Introduction to Catalysis, Kinetics, and Chemical Processes explains the basic concepts of green engineering and reactor design fundamentals, and provides key knowledge for students at technical universities and professionals already working in the industry.

Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis

Author: G.F. Froment
Publisher: Elsevier
ISBN: 9780080530628
Format: PDF, ePub, Docs
Download Now
Many processes of the chemical industry are based upon heterogeneous catalysis. Two important items of these processes are the development of the catalyst itself and the design and optimization of the reactor. Both aspects would benefit from rigorous and accurate kinetic modeling, based upon information on the working catalyst gained from classical steady state experimentation, but also from studies using surface science techniques, from quantum chemical calculations providing more insight into possible reaction pathways and from transient experimentation dealing with reactions and reactors. This information is seldom combined into a kinetic model and into a quantitative description of the process. Generally the catalytic aspects are dealt with by chemists and by physicists, while the chemical engineers are called upon for mechanical aspects of the reactor design and its control. The symposium "Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis" aims at illustrating a more global and concerted approach through a number of prestigious keynote lectures and severely screened oral and poster presentations.