Modern Fluid Dynamics Second Edition

Author: Clement Kleinstreuer
Publisher: CRC Press
ISBN: 1351849638
Format: PDF, Docs
Download Now
Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer, lubrication, fluid-particle dynamics, microfluidics, entropy generation, and fluid-structure interactions are among the topics covered. Part A presents fluids principles, and prepares readers for the applications of fluid dynamics covered in Part B, which includes computer simulations and project writing. A review of the engineering math needed for fluid dynamics is included in an appendix.

Modern Fluid Dynamics

Author: C. Kleinstreuer
Publisher:
ISBN: 9781523118205
Format: PDF, ePub, Docs
Download Now
"Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer, lubrication, fluid-particle dynamics, microfluidics, entropy generation, and fluid-structure interactions are among the topics covered. Part A presents fluids principles, and prepares readers for the applications of fluid dynamics covered in Part B, which includes computer simulations and project writing. A review of the engineering math needed for fluid dynamics is included in an appendix."--Provided by publisher.

Modern Fluid Dynamics

Author: Clement Kleinstreuer
Publisher: Springer Science & Business Media
ISBN: 9048120950
Format: PDF, ePub
Download Now
This textbook covers essentials of traditional and modern fluid dynamics, i. e. , the fundamentals of and basic applications in fluid mechanics and convection heat transfer with brief excursions into fluid-particle dynamics and solid mechanics. Specifically, it is suggested that the book can be used to enhance the knowledge base and skill level of engineering and physics students in macro-scale fluid mechanics (see Chaps. 1–5 and 10), followed by an int- ductory excursion into micro-scale fluid dynamics (see Chaps. 6 to 9). These ten chapters are rather self-contained, i. e. , most of the material of Chaps. 1–10 (or selectively just certain chapters) could be taught in one course, based on the students’ background. Typically, serious seniors and first-year graduate students form a receptive audience (see sample syllabus). Such as target group of students would have had prerequisites in thermodynamics, fluid mechanics and solid mechanics, where Part A would be a welcomed refresher. While introductory fluid mechanics books present the material in progressive order, i. e. , employing an inductive approach from the simple to the more difficult, the present text adopts more of a deductive approach. Indeed, understanding the derivation of the basic equations and then formulating the system-specific equations with suitable boundary conditions are two key steps for proper problem solutions.

Modern Fluid Dynamics for Physics and Astrophysics

Author: Oded Regev
Publisher: Springer
ISBN: 1493931644
Format: PDF, ePub, Mobi
Download Now
This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It is assumed that the readers are mathematically equipped with a reasonable knowledge in analysis, including basics of ordinary and partial differential equations and a good command of vector calculus and linear algebra. Each chapter concludes with bibliographical notes in which the authors briefly discuss the chapter's essential literature and give recommendations for further, deeper reading. Included in each chapter are a number of problems, some of them relevant to astrophysics and planetary science. The book is written for advanced undergraduate and graduate students, but will also prove a valuable source of reference for established researchers.

Introduction to Compressible Fluid Flow Second Edition

Author: Patrick H. Oosthuizen
Publisher: CRC Press
ISBN: 1439877920
Format: PDF, ePub, Mobi
Download Now
Introduction to Compressible Fluid Flow, Second Edition offers extensive coverage of the physical phenomena experienced in compressible flow. Updated and revised, the second edition provides a thorough explanation of the assumptions used in the analysis of compressible flows. It develops in students an understanding of what causes compressible flows to differ from incompressible flows and how they can be analyzed. This book also offers a strong foundation for more advanced and focused study. The book begins with discussions of the analysis of isentropic flows, of normal and oblique shock waves and of expansion waves. The final chapters deal with nozzle characteristics, friction effects, heat exchange effects, a hypersonic flow, high-temperature gas effects, and low-density flows. This book applies real-world applications and gives greater attention to the supporting software and its practical application. Includes numerical results obtained using a modern commercial CFD (computer fluid dynamics) code to illustrate the type of results that can be obtained using such a code Replaces BASIC language programs with MATLAB® routines Avails COMPROP2 software which readers can use to do compressible flow computation Additional problems have been added, and non-numerical problems illustrating practical applications have been included. A solutions manual that contains complete solutions to all of the problems in this book is available. The manual incorporates the same problem-solving methodology as adopted in the worked examples in this book. It also provides summaries of the major equations developed in each chapter. An interactive computer program also accompanies this book.

Computational Fluid Mechanics and Heat Transfer Second Edition

Author: Richard H. Pletcher
Publisher: CRC Press
ISBN: 9781560320463
Format: PDF, ePub
Download Now
This comprehensive text provides basic fundamentals of computational theory and computational methods. The book is divided into two parts. The first part covers material fundamental to the understanding and application of finite-difference methods. The second part illustrates the use of such methods in solving different types of complex problems encountered in fluid mechanics and heat transfer. The book is replete with worked examples and problems provided at the end of each chapter.

Fluid Mechanics for Chemical Engineers with Microfluidics and CFD

Author: James O. Wilkes
Publisher: Pearson Education
ISBN: 0131482122
Format: PDF, ePub
Download Now
Fluid Mechanics for Chemical Engineers, Second Edition, with Microfluidics and CFD, systematically introduces fluid mechanics from the perspective of the chemical engineer who must understand actual physical behavior and solve real-world problems. Building on a first edition that earned Choice Magazine's Outstanding Academic Title award, this edition has been thoroughly updated to reflect the field's latest advances. This second edition contains extensive new coverage of both microfluidics and computational fluid dynamics, systematically demonstrating CFD through detailed examples using FlowLab and COMSOL Multiphysics. The chapter on turbulence has been extensively revised to address more complex and realistic challenges, including turbulent mixing and recirculating flows.

Physical Fluid Dynamics

Author: D. J. Tritton
Publisher: Clarendon Press
ISBN: 9780198544937
Format: PDF, Kindle
Download Now
In this new edition much of the material is new or rewritten but the purpose and style of the first edition are retained. Particular emphasis is given to information obtained by experiment and observation, in addition to analysis of the equations of motion, the book's primary concern is to convey fundamental understanding of the behaviour of fluids in motion. New topics in this second edition include double diffusive convection and modern ideas about dynamical chaos - mainly but not only in relation to transition to turbulence. The discussion of instabilities has been restructured and the treatments of separation and of convection in horizontal layers much extended.

Computational Fluid Dynamics

Author: Jiyuan Tu
Publisher: Butterworth-Heinemann
ISBN: 0080982433
Format: PDF
Download Now
An introduction to CFD fundamentals and using commercial CFD software to solve engineering problems, designed for the wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step by step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. The first book in the field aimed at CFD users rather than developers. New to this edition: A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method. Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry. Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used. 20% new content

Prandtl F hrer durch die Str mungslehre

Author: Herbert Oertel jr.
Publisher: Springer-Verlag
ISBN: 3658086270
Format: PDF, ePub, Docs
Download Now
Dieses Fachbuch gilt unumstritten als das Standardwerk der Strömungslehre. In der von renommierten Strömungswissenschaftlern verfassten aktuellen 14. Auflage wurden alle Kapitel auf den neuesten Erkenntnisstand gebracht. In ganzheitlicher Weise werden die Strömungen vom phänomenologischen Standpunkt her betrachtet und Systematiken daraus abgeleitet. Den Autoren gelingt es, den Blick für das Verständnis von Einflüssen und Vorgängen zu schärfen. Der Prandtl ist als klassisches Lehrbuch aber auch als Nachschlagewerk besonders gut geeignet. Die Printauflage wurde erstmalig parallel zu einer living edition auf Springer Reference entwickelt, bei der Änderungen jederzeit eingearbeitet werden können.