Modern Quantum Field Theory

Author: Tom Banks
Publisher: Cambridge University Press
ISBN: 1139473891
Format: PDF, ePub
Download Now
Presenting a variety of topics that are only briefly touched on in other texts, this book provides a thorough introduction to the techniques of field theory. Covering Feynman diagrams and path integrals, the author emphasizes the path integral approach, the Wilsonian approach to renormalization, and the physics of non-abelian gauge theory. It provides a thorough treatment of quark confinement and chiral symmetry breaking, topics not usually covered in other texts at this level. The Standard Model of particle physics is discussed in detail. Connections with condensed matter physics are explored, and there is a brief, but detailed, treatment of non-perturbative semi-classical methods. Ideal for graduate students in high energy physics and condensed matter physics, the book contains many problems,which help students practise the key techniques of quantum field theory.

A Modern Introduction to Quantum Field Theory

Author: Michele Maggiore
Publisher: Oxford University Press
ISBN: 0198520735
Format: PDF
Download Now
The importance and the beauty of modern quantum field theory resides in the power and variety of its methods and ideas, which find application in domains as different as particle physics, cosmology, condensed matter, statistical mechanics and critical phenomena. This book introduces the reader to the modern developments in a manner which assumes no previous knowledge of quantum field theory. Along with standard topics like Feynman diagrams, the book discusses effective lagrangians, renormalization group equations, the path integral formulation, spontaneous symmetry breaking and non-abelian gauge theories. The inclusion of more advanced topics will also make this a most useful book for graduate students and researchers.

Problems of Modern Quantum Field Theory

Author: Aleksandr A. Belavin
Publisher: Not Avail
ISBN: 9783540518334
Format: PDF, Kindle
Download Now
This volume contains the invited lectures of a school on modern quantum field theory held at Alushta, USSR, in May 1989. The development of this subject, including string theories attempting to model elementary particles, is closely interwoven with modern mathematical physics. The lectures presented by experts in the field provide an overview of the research pursued in different branches of this rapidly evolving field and draw attention to particular interconnections and problems. Topics covered include: geometrical quantization and finite size effects in conformal field theory; quasi-Hopf, Kac-Moody current and Lie super-algebras; quantum groups; Wess-Zumino-Witten models; Nizhnik-Zamolodchikov equations; non-archimedian strings; string dynamics; KdV and KP (super) equations and calculations on (super-) riemannian surfaces; 2d Ising model and 2d electron motion on surfaces in external magnetic fields.

Modern Quantum Field Theory II

Author: S R Das
Publisher: World Scientific
ISBN: 9814548693
Format: PDF, ePub, Mobi
Download Now
The proceedings reflect a broad spectrum of topics in contemporary theoretical physics: quantum aspects of black holes; recent progress in critical and noncritical string theory; spin chains quantum hall effect and generalized statistics; stochastic dynamics turbulence and reaction kinetics; foundations of quantum mechanics; new statistics in field theory; quantum field theory on Riemann surfaces and knot theory; lattice field theories. The lectures present developments in the frontiers of these subjects and provide interdisciplinary links between the areas. Contents:Black Holes and Quantum GravityString TheoryCondensed Matter and Statistical MechanicsFundamental Aspects of Quantum Mechanics and Quantum Field TheoryMathematics and Quantum Field TheoryIntegrable ModelsLattice Field Theory Readership: Researchers and graduate students in physics and mathematics. keywords:

Quantum Field Theory in Condensed Matter Physics

Author: Alexei M. Tsvelik
Publisher: Cambridge University Press
ISBN: 1139440500
Format: PDF
Download Now
This book is a course in modern quantum field theory as seen through the eyes of a theorist working in condensed matter physics. It contains a gentle introduction to the subject and therefore can be used even by graduate students. The introductory parts include a derivation of the path integral representation, Feynman diagrams and elements of the theory of metals including a discussion of Landau–Fermi liquid theory. In later chapters the discussion gradually turns to more advanced methods used in the theory of strongly correlated systems. The book contains a thorough exposition of such non-perturbative techniques as 1/N-expansion, bosonization (Abelian and non-Abelian), conformal field theory and theory of integrable systems. The book is intended for graduate students, postdoctoral associates and independent researchers working in condensed matter physics.

Quantum Field Theory

Author: Lowell S. Brown
Publisher: Cambridge University Press
ISBN: 9780521469463
Format: PDF, ePub
Download Now
This book develops quantum field theory starting from its foundation in quantum mechanics. Quantum field theory is the basic theory of elementary particle physics. In recent years, many techniques have been developed which extend and clarify this theory. This book incorporates these modern methods, giving a thoroughly modern pedagogic account which starts from first principles. The path integral formulation is introduced right at the beginning. The method of dimensional continuation is employed to regulate and renormalize the theory. This facilitates the introduction of the concepts of the renormalization group at an early stage. The notion of spontaneous symmetry breakdown is also introduced early on by the example of superfluid helium. Topics in quantum electrodynamics are described which have an analog in quantum chromodynamics. Some novel techniques are employed, such as the use of dimensional continuation to compute the Lamb shift. Many problems are included.

Quantum Field Theory

Author: Lewis H. Ryder
Publisher: Cambridge University Press
ISBN: 9780521478144
Format: PDF
Download Now
This book is a modern introduction to the ideas and techniques of quantum field theory. After a brief overview of particle physics and a survey of relativistic wave equations and Lagrangian methods, the author develops the quantum theory of scalar and spinor fields, and then of gauge fields. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a brief survey of "topological" objects in field theory and, new to this edition, a chapter devoted to supersymmetry. Graduate students in particle physics and high energy physics will benefit from this book.

Quantum Field Theory

Author: V. P. Nair
Publisher: Springer Science & Business Media
ISBN: 0387250980
Format: PDF, ePub, Mobi
Download Now
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it grew out of courses on field theory and particle physics taught at Columbia University and the City College of CUNY. The first few chapters, up to Chapter 12, contain material that generally goes into any course on quantum field theory, although there are a few nuances of presentation which readers may find to be different from other books. This first part of the book can be used for a general course on field theory, omitting, perhaps, the last three sections in Chapter 3, the last two in Chapter 8 and sections 6 and 7 in Chapter 10. The remaining chapters cover some of the more modern developments over the last three decades, involving topological and geometrical features. The introduction given to the mathematical basis of this part of the discussion is necessarily brief and should be accompanied by books on the relevant mathematical topics as indicated in the bibliography. Professor Nair also concentrates on developments pertinent to a better understanding of the standard model. There is no discussion of supersymmetry, supergravity, developments in field theory inspired by string theory, etc. There is also no detailed discussion of the renormalization group. Each of these topics would require a book in its own right to do justice to the topic. Quantum Field Theory: A Modern Perspective serves as a portal to so many more topics of detailed and ongoing research, referring readers to more detailed treatments for many specific topics. The book also contains extensive references, providing readers a more comprehensive perspective on the literature and the historical development of the subject. V. Parameswaran Nair is Professor of Physics at City College of The City University of New York (CUNY). Professor Nair has held Visiting Professorships at The Abdus Salam International Center for Theoretical Physics, Rockefeller University, Institute for Advanced Study at Princeton, and Massachusetts Institute of Technology.

Modern Quantum Mechanics

Author: J. J. Sakurai
Publisher: Cambridge University Press
ISBN: 1108422411
Format: PDF, Kindle
Download Now
A comprehensive and engaging textbook, providing a graduate-level, non-historical, modern introduction of quantum mechanical concepts.