Monte Carlo Methods and Stochastic Processes

Author: Emmanuel Gobet
Publisher: CRC Press
ISBN: 1498746233
Format: PDF, Docs
Download Now
Developed from the author’s course at the Ecole Polytechnique, Monte-Carlo Methods and Stochastic Processes: From Linear to Non-Linear focuses on the simulation of stochastic processes in continuous time and their link with partial differential equations (PDEs). It covers linear and nonlinear problems in biology, finance, geophysics, mechanics, chemistry, and other application areas. The text also thoroughly develops the problem of numerical integration and computation of expectation by the Monte-Carlo method. The book begins with a history of Monte-Carlo methods and an overview of three typical Monte-Carlo problems: numerical integration and computation of expectation, simulation of complex distributions, and stochastic optimization. The remainder of the text is organized in three parts of progressive difficulty. The first part presents basic tools for stochastic simulation and analysis of algorithm convergence. The second part describes Monte-Carlo methods for the simulation of stochastic differential equations. The final part discusses the simulation of non-linear dynamics.

Monte Carlo Methods for Applied Scientists

Author: Ivan T. Dimov
Publisher: World Scientific
ISBN: 9810223293
Format: PDF, ePub
Download Now
The Monte Carlo method is inherently parallel and the extensive and rapid development in parallel computers, computational clusters and grids has resulted in renewed and increasing interest in this method. At the same time there has been an expansion in the application areas and the method is now widely used in many important areas of science including nuclear and semiconductor physics, statistical mechanics and heat and mass transfer.This book attempts to bridge the gap between theory and practice concentrating on modern algorithmic implementation on parallel architecture machines. Although a suitable text for final year postgraduate mathematicians and computational scientists it is principally aimed at the applied scientists: only a small amount of mathematical knowledge is assumed and theorem proving is kept to a minimum, with the main focus being on parallel algorithms development often to applied industrial problems.A selection of algorithms developed both for serial and parallel machines are provided.

Monte Carlo Methods

Author: Malvin H. Kalos
Publisher: John Wiley & Sons
ISBN: 3527626220
Format: PDF, ePub, Mobi
Download Now
This introduction to Monte Carlo methods seeks to identify and study the unifying elements that underlie their effective application. Initial chapters provide a short treatment of the probability and statistics needed as background, enabling those without experience in Monte Carlo techniques to apply these ideas to their research. The book focuses on two basic themes: The first is the importance of random walks as they occur both in natural stochastic systems and in their relationship to integral and differential equations. The second theme is that of variance reduction in general and importance sampling in particular as a technique for efficient use of the methods. Random walks are introduced with an elementary example in which the modeling of radiation transport arises directly from a schematic probabilistic description of the interaction of radiation with matter. Building on this example, the relationship between random walks and integral equations is outlined. The applicability of these ideas to other problems is shown by a clear and elementary introduction to the solution of the Schrödinger equation by random walks. The text includes sample problems that readers can solve by themselves to illustrate the content of each chapter. This is the second, completely revised and extended edition of the successful monograph, which brings the treatment up to date and incorporates the many advances in Monte Carlo techniques and their applications, while retaining the original elementary but general approach.

Stochastic Process Variation in Deep Submicron CMOS

Author: Amir Zjajo
Publisher: Springer Science & Business Media
ISBN: 9400777817
Format: PDF, ePub, Mobi
Download Now
One of the most notable features of nanometer scale CMOS technology is the increasing magnitude of variability of the key device parameters affecting performance of integrated circuits. The growth of variability can be attributed to multiple factors, including the difficulty of manufacturing control, the emergence of new systematic variation-generating mechanisms, and most importantly, the increase in atomic-scale randomness, where device operation must be described as a stochastic process. In addition to wide-sense stationary stochastic device variability and temperature variation, existence of non-stationary stochastic electrical noise associated with fundamental processes in integrated-circuit devices represents an elementary limit on the performance of electronic circuits. In an attempt to address these issues, Stochastic Process Variation in Deep-Submicron CMOS: Circuits and Algorithms offers unique combination of mathematical treatment of random process variation, electrical noise and temperature and necessary circuit realizations for on-chip monitoring and performance calibration. The associated problems are addressed at various abstraction levels, i.e. circuit level, architecture level and system level. It therefore provides a broad view on the various solutions that have to be used and their possible combination in very effective complementary techniques for both analog/mixed-signal and digital circuits. The feasibility of the described algorithms and built-in circuitry has been verified by measurements from the silicon prototypes fabricated in standard 90 nm and 65 nm CMOS technology.

Stochastic Processes Modeling and Simulation

Author: D N Shanbhag
Publisher: Gulf Professional Publishing
ISBN: 9780444500137
Format: PDF, ePub, Mobi
Download Now
This sequel to volume 19 of Handbook on Statistics on Stochastic Processes: Modelling and Simulation is concerned mainly with the theme of reviewing and, in some cases, unifying with new ideas the different lines of research and developments in stochastic processes of applied flavour. This volume consists of 23 chapters addressing various topics in stochastic processes. These include, among others, those on manufacturing systems, random graphs, reliability, epidemic modelling, self-similar processes, empirical processes, time series models, extreme value therapy, applications of Markov chains, modelling with Monte Carlo techniques, and stochastic processes in subjects such as engineering, telecommunications, biology, astronomy and chemistry. particular with modelling, simulation techniques and numerical methods concerned with stochastic processes. The scope of the project involving this volume as well as volume 19 is already clarified in the preface of volume 19. The present volume completes the aim of the project and should serve as an aid to students, teachers, researchers and practitioners interested in applied stochastic processes.

Monte Carlo Methods in Mechanics of Fluid and Gas

Author: Oleg Mikhaĭlovich Belot︠s︡erkovskiĭ
Publisher: World Scientific
ISBN: 9814282367
Format: PDF, ePub
Download Now
This book is devoted to analysis of Monte Carlo methods developed in rarefied gas dynamics. Presented is the short history of the development of such methods, described are their main properties, their advantages and deficiencies. It is shown that the contemporary stage in the progress of computational methods cannot be regarded without a complex approach to the preparation of algorithms taking into account all the peculiarities of the problem under consideration, that is, of the physical nature of a process, the mathematical model and the theoretical aspects of computational mathematics and stochastic processes. Thoroughly investigated is the possibility of application of Monte Carlo methods in some kindred areas of science which are non-traditional for the use of statistical modeling (continuous media, turbulence). Considered are the possible directions of development of statistical modeling.

Control and Optimization of Multiscale Process Systems

Author: Panagiotis D. Christofides
Publisher: Springer Science & Business Media
ISBN: 0817647937
Format: PDF, ePub
Download Now
This book—the first of its kind—presents general methods for feedback controller synthesis and optimization of multiscale systems, illustrating their application to thin-film growth, sputtering processes, and catalytic systems of industrial interest. The authors demonstrate the advantages of the methods presented for control and optimization through extensive simulations. Included in the work are new techniques for feedback controller design and optimization of multiscale process systems that are not included in other books. The book also contains a rich collection of new research topics and references to significant recent work.

Parametric Estimates by the Monte Carlo Method

Author: Gennadij Alekseevič Michajlov
Publisher: VSP
ISBN: 9789067642972
Format: PDF, ePub
Download Now
This monograph is devoted to the further development of parametric weight Monte Carlo estimates for solving linear and nonlinear integral equations, radiation transfer equations, and boundary value problems, including problems with random parameters. The use of these estimates leads to the construction of new, effective Monte Carlo methods for calculating parametric multiple derivatives of solutions and for the main eigenvalues. The book opens with an introduction on the theory of weight Monte Carlo methods. The following chapters contain new material on solving boundary value problems with complex parameters, mixed problems to parabolic equations, boundary value problems of the second and third kind, and some improved techniques related to vector and nonlinear Helmholtz equations. Special attention is given to the foundation and optimization of the global 'walk on grid' method for solving the Helmholtz difference equation. Additionally, new Monte Carlo methods for solving stochastic radiation transfer problems are presented, including the estimation of probabilistic moments of corresponding critical parameters.

Multivariate Density Estimation

Author: David W. Scott
Publisher: John Wiley & Sons
ISBN: 047031768X
Format: PDF, ePub, Docs
Download Now
Written to convey an intuitive feel for both theory and practice, its main objective is to illustrate what a powerful tool density estimation can be when used not only with univariate and bivariate data but also in the higher dimensions of trivariate and quadrivariate information. Major concepts are presented in the context of a histogram in order to simplify the treatment of advanced estimators. Features 12 four-color plates, numerous graphic illustrations as well as a multitude of problems and solutions.

Mean Field Simulation for Monte Carlo Integration

Author: Pierre Del Moral
Publisher: CRC Press
ISBN: 146650417X
Format: PDF, ePub
Download Now
In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Markov chain Monte Carlo models; bootstrapping methods; ensemble Kalman filters; and interacting particle filters. Mean Field Simulation for Monte Carlo Integration presents the first comprehensive and modern mathematical treatment of mean field particle simulation models and interdisciplinary research topics, including interacting jumps and McKean-Vlasov processes, sequential Monte Carlo methodologies, genetic particle algorithms, genealogical tree-based algorithms, and quantum and diffusion Monte Carlo methods. Along with covering refined convergence analysis on nonlinear Markov chain models, the author discusses applications related to parameter estimation in hidden Markov chain models, stochastic optimization, nonlinear filtering and multiple target tracking, stochastic optimization, calibration and uncertainty propagations in numerical codes, rare event simulation, financial mathematics, and free energy and quasi-invariant measures arising in computational physics and population biology. This book shows how mean field particle simulation has revolutionized the field of Monte Carlo integration and stochastic algorithms. It will help theoretical probability researchers, applied statisticians, biologists, statistical physicists, and computer scientists work better across their own disciplinary boundaries.