Morse Theory

Author: Kevin P Knudson
Publisher: World Scientific Publishing Company
ISBN: 9814630985
Format: PDF
Download Now
Morse Theory: Smooth and Discrete serves as an introduction to classical smooth Morse theory and to Forman's discrete Morse theory, highlighting the parallels between the two subjects. This is the first time both smooth and discrete Morse theory have been treated in a single volume. This makes the book a valuable resource for students and professionals working in topology and discrete mathematics. With a strong focus on examples, the text is suitable for advanced undergraduates or beginning graduate students.

Differentialgeometrie Topologie und Physik

Author: Mikio Nakahara
Publisher: Springer-Verlag
ISBN: 3662453002
Format: PDF, Kindle
Download Now
Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

Morphological Modeling of Terrains and Volume Data

Author: Lidija Comic
Publisher: Springer
ISBN: 1493921495
Format: PDF, Mobi
Download Now
This book describes the mathematical background behind discrete approaches to morphological analysis of scalar fields, with a focus on Morse theory and on the discrete theories due to Banchoff and Forman. The algorithms and data structures presented are used for terrain modeling and analysis, molecular shape analysis, and for analysis or visualization of sensor and simulation 3D data sets. It covers a variety of application domains including geography, geology, environmental sciences, medicine and biology. The authors classify the different approaches to morphological analysis which are all based on the construction of Morse or Morse-Smale decompositions. They describe algorithms for computing such decompositions for both 2D and 3D scalar fields, including those based on the discrete watershed transform. Also addressed are recent developments in the research on morphological shape analysis, such as simplification operators for Morse and Morse-Smale complexes and their multi-resolution representation. Designed for professionals and researchers involved with modeling and algorithm analysis, Morphological Modeling of Terrains and Volume Data is a valuable resource. Advanced-level students of computer science, mathematics and geography will also find the content very helpful.

Geometric Combinatorics

Author: Ezra Miller
Publisher: American Mathematical Soc.
ISBN: 9780821886953
Format: PDF
Download Now
Geometric combinatorics describes a wide area of mathematics that is primarily the study of geometric objects and their combinatorial structure. This text is a compilation of expository articles at the interface between combinatorics and geometry.

An Introduction to Morse Theory

Author: Yukio Matsumoto
Publisher: American Mathematical Soc.
ISBN: 9780821810224
Format: PDF, ePub, Docs
Download Now
In a very broad sense, ```spaces'' are the primary objects of study in geometry, and ``functions'' are the objects of study in analysis. There are, however, deep relations between functions defined on a space and the shape of the space, and the study of these relations is the main theme of Morse theory. In particular, Morse's original insight was to examine the critical points of a function and to derive information about the shape of the space from the information about the critical points. This book describes finite-dimensional Morse theory, which is an indispensable tool in the topological study of manifolds. That is, one can decompose manifolds into fundamental blocks such as cells and handles by Morse theory, and thereby compute a variety of topological invariants and discuss the shapes of manifolds. These aspects of Morse theory date from its origins and continue to be important in geometry and mathematical physics. This textbook provides an introduction to Morse theory suitable for advanced undergraduates and graduate students.

New Perspectives in Algebraic Combinatorics

Author: Louis J. Billera
Publisher: Cambridge University Press
ISBN: 9780521770873
Format: PDF, Docs
Download Now
2000 text containing expository contributions by respected researchers on the connections between algebraic geometry, topology, commutative algebra, representation theory, and convex geometry.

Differential Geometry and Topology Discrete and Computational Geometry

Author: Mohamed Boucetta
Publisher: IOS Press
ISBN: 158603507X
Format: PDF, Mobi
Download Now
The aim of this volume is to give an introduction and overview to differential topology, differential geometry and computational geometry with an emphasis on some interconnections between these three domains of mathematics. The chapters give the background required to begin research in these fields or at their interfaces. They introduce new research domains and both old and new conjectures in these different subjects show some interaction between other sciences close to mathematics. Topics discussed are; the basis of differential topology and combinatorial topology, the link between differential geometry and topology, Riemanian geometry (Levi-Civita connextion, curvature tensor, geodesic, completeness and curvature tensor), characteristic classes (to associate every fibre bundle with isomorphic fiber bundles), the link between differential geometry and the geometry of non smooth objects, computational geometry and concrete applications such as structural geology and graphism.

Unglaubliche Zahlen

Author: Ian Stewart
Publisher: Rowohlt Verlag GmbH
ISBN: 3644564310
Format: PDF, ePub
Download Now
In diesem Buch nimmt der britische Mathe-Guru seine Leser mit auf eine Reise durch das Reich der Zahlen – reelle, rationale, irrationale, komplexe; ganz, ganz kleine und unendlich große, Fraktale, Logarithmen, Hochzahlen, Primzahlen, Kusszahlen und viele mehr. Jedes Kapitel konzentriert sich auf eine Zahl oder Zahlengruppe und erläutert, warum sie so interessant ist. «Jede Zahl hat ihre eigene Geschichte zu erzählen», heißt es im Vorwort. Stewart erzählt sie mit Begeisterung und versteht es geschickt, diese Geschichten miteinander zu verweben, ob es um die Zahl Pi geht oder zum Schluss auch um Geheimcodes, den Rubikwürfel und Sudoku. Darüber hinaus erfährt man viel über die Geschichte der Mathematik und die Rolle, die sie für unsere Entwicklung spielt. Schließlich waren es die Zahlen, so der Autor, «die es der Menschheit ermöglicht haben, sich aus dem Schlamm zu ziehen und nach den Sternen zu greifen».

Handbook of Discrete and Computational Geometry Second Edition

Author: Csaba D. Toth
Publisher: CRC Press
ISBN: 9781420035315
Format: PDF, ePub, Mobi
Download Now
While high-quality books and journals in this field continue to proliferate, none has yet come close to matching the Handbook of Discrete and Computational Geometry, which in its first edition, quickly became the definitive reference work in its field. But with the rapid growth of the discipline and the many advances made over the past seven years, it's time to bring this standard-setting reference up to date. Editors Jacob E. Goodman and Joseph O'Rourke reassembled their stellar panel of contributors, added manymore, and together thoroughly revised their work to make the most important results and methods, both classic and cutting-edge, accessible in one convenient volume. Now over more then 1500 pages, the Handbook of Discrete and Computational Geometry, Second Edition once again provides unparalleled, authoritative coverage of theory, methods, and applications. Highlights of the Second Edition: Thirteen new chapters: Five on applications and others on collision detection, nearest neighbors in high-dimensional spaces, curve and surface reconstruction, embeddings of finite metric spaces, polygonal linkages, the discrepancy method, and geometric graph theory Thorough revisions of all remaining chapters Extended coverage of computational geometry software, now comprising two chapters: one on the LEDA and CGAL libraries, the other on additional software Two indices: An Index of Defined Terms and an Index of Cited Authors Greatly expanded bibliographies