Multilevel Modeling of Categorical Outcomes Using IBM SPSS

Author: Ronald H Heck
Publisher: Routledge
ISBN: 1136672346
Format: PDF, Kindle
Download Now
This is the first workbook that introduces the multilevel approach to modeling with categorical outcomes using IBM SPSS Version 20. Readers learn how to develop, estimate, and interpret multilevel models with categorical outcomes. The authors walk readers through data management, diagnostic tools, model conceptualization, and model specification issues related to single-level and multilevel models with categorical outcomes. Screen shots clearly demonstrate techniques and navigation of the program. Modeling syntax is provided in the appendix. Examples of various types of categorical outcomes demonstrate how to set up each model and interpret the output. Extended examples illustrate the logic of model development, interpretation of output, the context of the research questions, and the steps around which the analyses are structured. Readers can replicate examples in each chapter by using the corresponding data and syntax files available at www.psypress.com/9781848729568. The book opens with a review of multilevel with categorical outcomes, followed by a chapter on IBM SPSS data management techniques to facilitate working with multilevel and longitudinal data sets. Chapters 3 and 4 detail the basics of the single-level and multilevel generalized linear model for various types of categorical outcomes. These chapters review underlying concepts to assist with trouble-shooting common programming and modeling problems. Next population-average and unit-specific longitudinal models for investigating individual or organizational developmental processes are developed. Chapter 6 focuses on single- and multilevel models using multinomial and ordinal data followed by a chapter on models for count data. The book concludes with additional trouble shooting techniques and tips for expanding on the modeling techniques introduced. Ideal as a supplement for graduate level courses and/or professional workshops on multilevel, longitudinal, latent variable modeling, multivariate statistics, and/or advanced quantitative techniques taught in psychology, business, education, health, and sociology, this practical workbook also appeals to researchers in these fields. An excellent follow up to the authors’ highly successful Multilevel and Longitudinal Modeling with IBM SPSS and Introduction to Multilevel Modeling Techniques, 2nd Edition, this book can also be used with any multilevel and/or longitudinal book or as a stand-alone text introducing multilevel modeling with categorical outcomes.

Neue Trends in den Sozialwissenschaften

Author: Sebastian Jäckle
Publisher: Springer-Verlag
ISBN: 3658171898
Format: PDF, Docs
Download Now
Dieses Buch stellt einige wichtige und zukunftsträchtige neuere Methoden in den Sozialwissenschaften vor. Ziel des Buches ist, einerseits deren Grundlogik zu klären und andererseits zu zeigen, inwiefern sie den klassischen Methodenkatalog sinnvoll ergänzen können. Dazu wird das Spektrum an mit diesen Techniken bearbeitbaren Fragestellungen aufgezeigt, Beispielarbeiten diskutiert, nötige Voraussetzungen z.B. in Bezug auf die Datenqualität angesprochen, und damit insgesamt das Potential dieser Verfahren veranschaulicht. Zudem gibt jeder Beitrag praktische Tipps für die Umsetzung eigener Forschungsarbeiten und anhand kommentierter Literaturempfehlungen Ansatzpunkte für die intensivere Beschäftigung mit den Methoden. Daneben wird (sofern angebracht) kurz diskutiert welche Softwarepakete sich für die Anwendung eignen.

Multilevel and Longitudinal Modeling with IBM SPSS

Author: Ronald H. Heck
Publisher: Routledge
ISBN: 1135074178
Format: PDF, Kindle
Download Now
This book demonstrates how to use multilevel and longitudinal modeling techniques available in the IBM SPSS mixed-effects program (MIXED). Annotated screen shots provide readers with a step-by-step understanding of each technique and navigating the program. Readers learn how to set up, run, and interpret a variety of models. Diagnostic tools, data management issues, and related graphics are introduced throughout. Annotated syntax is also available for those who prefer this approach. Extended examples illustrate the logic of model development to show readers the rationale of the research questions and the steps around which the analyses are structured. The data used in the text and syntax examples are available at www.routledge.com/9780415817110. Highlights of the new edition include: Updated throughout to reflect IBM SPSS Version 21. Further coverage of growth trajectories, coding time-related variables, covariance structures, individual change and longitudinal experimental designs (Ch.5). Extended discussion of other types of research designs for examining change (e.g., regression discontinuity, quasi-experimental) over time (Ch.6). New examples specifying multiple latent constructs and parallel growth processes (Ch. 7). Discussion of alternatives for dealing with missing data and the use of sample weights within multilevel data structures (Ch.1). The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques which facilitate working with multilevel, longitudinal, and cross-classified data sets. Chapters 3 and 4 introduce the basics of multilevel modeling: developing a multilevel model, interpreting output, and trouble-shooting common programming and modeling problems. Models for investigating individual and organizational change are presented in chapters 5 and 6, followed by models with multivariate outcomes in chapter 7. Chapter 8 provides an illustration of multilevel models with cross-classified data structures. The book concludes with ways to expand on the various multilevel and longitudinal modeling techniques and issues when conducting multilevel analyses. Ideal as a supplementary text for graduate courses on multilevel and longitudinal modeling, multivariate statistics, and research design taught in education, psychology, business, and sociology, this book’s practical approach also appeals to researchers in these fields. The book provides an excellent supplement to Heck & Thomas’s An Introduction to Multilevel Modeling Techniques, 2nd Edition; however, it can also be used with any multilevel and/or longitudinal modeling book or as a stand-alone text.

Sarstedt Sch tz IBM SPSS Syntax

Author: Marko Sarstedt
Publisher: Vahlen
ISBN: 3800643626
Format: PDF, ePub
Download Now
Der souveräne Umgang mit der SPSS Syntax bietet einen unschätzbaren Vorteil für die tägliche Arbeit von Anwendern, die mit der Analyse von Daten zu tun haben. Das Buch ist eine integrierte Einführung in die Steuersprache von IBM SPSS Statistics für Studenten, Forscher und Praktiker. Es behandelt neben den notwendigen Grundlagen die Themengebiete Datenaufbereitung, Datentrans-formation und -modifikation. Weitere Themengebiete umfassen die Makro- und Matrixsprache, die in der 2. Auflage deutlich erweitert worden sind. Die Neuauflage wurde von Grund auf neu bearbeitet und um zahlreiche typische Anwendungsbeispiele ergänzt, die anhand realer Daten u.?a. des J.?D. Power and Associates Customer Satisfaction Index veranschaulicht werden. Die zugehörigen Datensätze sind als kostenloses Zusatzmaterial im Internet erhältlich.

SPSS 16

Author: Achim Bühl
Publisher: Pearson Deutschland GmbH
ISBN: 9783827373328
Format: PDF, Docs
Download Now
Die Standardeinführung für SPSS ist auf der Basis zahlreicher neuer Datensätze für die Version 16 vollständig überarbeitet und erweitert worden. Ausgehend von Problemstellungen aus der Praxis wird gezeigt, wie Sie mit SPSS arbeiten können. Die Beispiele basieren meist auf Fallstudien und sind vor allem dem sozialwissenschaftlichen und dem psychologisch-medizinischen Bereich entnommen. Der Autor beschreibt ausführlich den kompletten statistischen Inhalt der Module Base, Regression Models und Advanced Models. In der 11. Auflage des Werks nimmt erstmals auch die Korrespondenzanalyse einen breiten Raum ein; ein Verfahren, das immer häufiger eingesetzt wird und Zusammenhänge von Variablen optisch als Punkte eines geometrischen Raums aufbereitet.

Statistik II f r Dummies

Author: Deborah J. Rumsey
Publisher: John Wiley & Sons
ISBN: 3527669248
Format: PDF, Mobi
Download Now
Es gibt Qualen, verdammte Qualen und Statistik, so sehen es viele Studenten. Mit ?Statistik II f?r Dummies? lernen Sie so leicht wie m?glich. Deborah Rumsey zeigt Ihnen, wie Sie Varianzanalysen und Chi-Quadrat-Test machen, wie Sie mit Regressionen arbeiten, ein Modell erstellen, Korrelationen bilden und vieles mehr. So lernen Sie die Methoden, die Sie brauchen, und erhalten das Handwerkszeug, erfolgreich Ihre Statistikpr?fungen zu bestehen.

Datenanalyse mit SPSS f r Fortgeschrittene 2 Multivariate Verfahren f r Querschnittsdaten

Author: Sabine Fromm
Publisher: Springer-Verlag
ISBN: 3531187945
Format: PDF, ePub, Mobi
Download Now
Das Buch ist als Arbeitsmittel für alle gedacht, die in der empirischen Sozialforschung tätig sind und bereits Grundkenntnisse in der Anwendung von SPSS besitzen. Ziel ist es, typische Fragestellungen der empirischen Sozialforschung in geeignete Auswertungskonzepte umsetzen und diese mittels des Statistik-Programmpakets SPSS bearbeiten zu können. Für jedes Auswertungsverfahren werden zunächst anwendungsorientiert die statistischen Grundlagen erklärt und dann anhand eines Anwendungsbeispiels mit realen Daten die Arbeitsschritte mit SPSS dargestellt; dabei werden auch Prozesse der Datentransformation erläutert. Datensätze sind im Internet zum Download verfügbar.

Statistik mit Excel f 1 4r Dummies

Author: Joseph Schmuller
Publisher: John Wiley & Sons
ISBN: 3527811702
Format: PDF
Download Now
Statistiken und Aussagen zu Wahrscheinlichkeiten begegnen uns heute ï¿1⁄2berall: Die Umsatzentwicklung in Unternehmen, Hochrechnungen fï¿1⁄2r Wahlergebnisse, PISA-Ergebnisse fï¿1⁄2nfzehnjï¿1⁄2hriger Schï¿1⁄2ler sind nur drei von zahlreichen Beispielen. Joseph Schmuller zeigt Ihnen in diesem Buch, wie Sie die Zahlen in den Griff bekommen und Daten, Statistiken und Wahrscheinlichkeiten richtig lesen und interpretieren. Dafï¿1⁄2r brauchen Sie keinen Statistikkurs zu belegen und kein Mathegenie zu sein. Fï¿1⁄2r alles gibt es in Excel die passende Funktion und das passende Werkzeug. So kï¿1⁄2nnen Sie Theorie und Praxis sofort miteinander verbinden.