Multivariable Control Systems

Author: Pedro Albertos
Publisher: Springer Science & Business Media
ISBN: 1852338431
Format: PDF, Mobi
Download Now
This book focuses on control design with continual references to the practical aspects of implementation. While the concepts of multivariable control are justified, the book emphasizes the need to maintain student interest and motivation over exhaustively rigorous mathematical proof.

Robust Control Design with MATLAB

Author: Da-Wei Gu
Publisher: Springer Science & Business Media
ISBN: 1447146824
Format: PDF, ePub, Mobi
Download Now
Robust Control Design with MATLAB® (second edition) helps the student to learn how to use well-developed advanced robust control design methods in practical cases. To this end, several realistic control design examples from teaching-laboratory experiments, such as a two-wheeled, self-balancing robot, to complex systems like a flexible-link manipulator are given detailed presentation. All of these exercises are conducted using MATLAB® Robust Control Toolbox 3, Control System Toolbox and Simulink®. By sharing their experiences in industrial cases with minimum recourse to complicated theories and formulae, the authors convey essential ideas and useful insights into robust industrial control systems design using major H-infinity optimization and related methods allowing readers quickly to move on with their own challenges. The hands-on tutorial style of this text rests on an abundance of examples and features for the second edition: • rewritten and simplified presentation of theoretical and methodological material including original coverage of linear matrix inequalities; • new Part II forming a tutorial on Robust Control Toolbox 3; • fresh design problems including the control of a two-rotor dynamic system; and • end-of-chapter exercises. Electronic supplements to the written text that can be downloaded from extras.springer.com/isbn include: • M-files developed with MATLAB® help in understanding the essence of robust control system design portrayed in text-based examples; • MDL-files for simulation of open- and closed-loop systems in Simulink®; and • a solutions manual available free of charge to those adopting Robust Control Design with MATLAB® as a textbook for courses. Robust Control Design with MATLAB® is for graduate students and practising engineers who want to learn how to deal with robust control design problems without spending a lot of time in researching complex theoretical developments.

Model Predictive Control

Author: Eduardo F. Camacho
Publisher: Springer Science & Business Media
ISBN: 0857293982
Format: PDF, ePub, Docs
Download Now
The second edition of "Model Predictive Control" provides a thorough introduction to theoretical and practical aspects of the most commonly used MPC strategies. It bridges the gap between the powerful but often abstract techniques of control researchers and the more empirical approach of practitioners. The book demonstrates that a powerful technique does not always require complex control algorithms. Many new exercises and examples have also been added throughout. Solutions available for download from the authors' website save the tutor time and enable the student to follow results more closely even when the tutor isn't present.

Lectures in Feedback Design for Multivariable Systems

Author: Alberto Isidori
Publisher: Springer
ISBN: 3319420313
Format: PDF, ePub, Docs
Download Now
This book focuses on methods that relate, in one form or another, to the “small-gain theorem”. It is aimed at readers who are interested in learning methods for the design of feedback laws for linear and nonlinear multivariable systems in the presence of model uncertainties. With worked examples throughout, it includes both introductory material and more advanced topics. Divided into two parts, the first covers relevant aspects of linear-systems theory, the second, nonlinear theory. In order to deepen readers’ understanding, simpler single-input–single-output systems generally precede treatment of more complex multi-input–multi-output (MIMO) systems and linear systems precede nonlinear systems. This approach is used throughout, including in the final chapters, which explain the latest advanced ideas governing the stabilization, regulation, and tracking of nonlinear MIMO systems. Two major design problems are considered, both in the presence of model uncertainties: asymptotic stabilization with a “guaranteed region of attraction” of a given equilibrium point and asymptotic rejection of the effect of exogenous (disturbance) inputs on selected regulated outputs. Much of the introductory instructional material in this book has been developed for teaching students, while the final coverage of nonlinear MIMO systems offers readers a first coordinated treatment of completely novel results. The worked examples presented provide the instructor with ready-to-use material to help students to understand the mathematical theory. Readers should be familiar with the fundamentals of linear-systems and control theory. This book is a valuable resource for students following postgraduate programs in systems and control, as well as engineers working on the control of robotic, mechatronic and power systems.

Multivariable System Identification For Process Control

Author: Y. Zhu
Publisher: Elsevier
ISBN: 9780080537115
Format: PDF, Docs
Download Now
Systems and control theory has experienced significant development in the past few decades. New techniques have emerged which hold enormous potential for industrial applications, and which have therefore also attracted much interest from academic researchers. However, the impact of these developments on the process industries has been limited. The purpose of Multivariable System Identification for Process Control is to bridge the gap between theory and application, and to provide industrial solutions, based on sound scientific theory, to process identification problems. The book is organized in a reader-friendly way, starting with the simplest methods, and then gradually introducing more complex techniques. Thus, the reader is offered clear physical insight without recourse to large amounts of mathematics. Each method is covered in a single chapter or section, and experimental design is explained before any identification algorithms are discussed. The many simulation examples and industrial case studies demonstrate the power and efficiency of process identification, helping to make the theory more applicable. MatlabTM M-files, designed to help the reader to learn identification in a computing environment, are included.

Control of Dead time Processes

Author: Julio E. Normey-Rico
Publisher: Springer Science & Business Media
ISBN: 1846288290
Format: PDF, Kindle
Download Now
This text introduces the fundamental techniques for controlling dead-time processes from simple monovariable to complex multivariable cases. Dead-time-process-control problems are studied using classical proportional-integral-differential (PID) control for the simpler examples and dead-time-compensator (DTC) and model predictive control (MPC) methods for progressively more complex ones. Downloadable MATLAB® code makes the examples and ideas more convenient and simpler.

Advanced Control Engineering

Author: Roland S. Burns
Publisher: Butterworth-Heinemann
ISBN: 9780750651004
Format: PDF, ePub
Download Now
Advanced Control Engineering provides a complete course in control engineering for undergraduates of all technical disciplines. Starting with a basic overview of elementary control theory this text quickly moves on to a rigorous examination of more advanced and cutting edge date aspects such as robust and intelligent control, including neural networks and genetic algorithms. With examples from aeronautical, marine and many other types of engineering, Roland Burns draws on his extensive teaching and practical experience presents the subject in an easily understood and applied manner. Control Engineering is a core subject in most technical areas. Problems in each chapter, numerous illustrations and free Matlab files on the accompanying website are brought together to provide a valuable resource for the engineering student and lecturer alike. Complete Course in Control Engineering Real life case studies Numerous problems

Control Systems with Input and Output Constraints

Author: A.H. Glattfelder
Publisher: Springer Science & Business Media
ISBN: 1447100476
Format: PDF
Download Now
From the reviews: [The authors] "...have succeeded in their intention to produce the first reference in the area that will be available for a broad audience. I think that this book will be a standard reference for a long time." Control Engineering Practice

Stability and Robustness of Multivariable Feedback Systems

Author: Michael George Safonov
Publisher: MIT Press (MA)
ISBN: 9780262693042
Format: PDF, ePub, Mobi
Download Now
A clear mathematical formulation of the issues that arise in designing feedback systems that are robust against the destabilizing effects of unknown-but-bounded uncertainty in component dynamics.

Internet Accessible Remote Laboratories Scalable E Learning Tools for Engineering and Science Disciplines

Author: Azad, Abul K.M.
Publisher: IGI Global
ISBN: 1613501870
Format: PDF, ePub, Mobi
Download Now
"This book presents current developments in the multidisciplinary creation of Internet accessible remote laboratories, offering perspectives on teaching with online laboratories, pedagogical design, system architectures for remote laboratories, future trends, and policy issues in the use of remote laboratories"--Provided by publisher.