Multivariate Statistical Methods

Author: Bryan F.J. Manly
Publisher: CRC Press
ISBN: 1498728995
Format: PDF, Docs
Download Now
Multivariate Statistical Methods: A Primer provides an introductory overview of multivariate methods without getting too deep into the mathematical details. This fourth edition is a revised and updated version of this bestselling introductory textbook. It retains the clear and concise style of the previous editions of the book and focuses on examples from biological and environmental sciences. The major update with this edition is that R code has been included for each of the analyses described, although in practice any standard statistical package can be used. The original idea with this book still applies. This was to make it as short as possible and enable readers to begin using multivariate methods in an intelligent manner. With updated information on multivariate analyses, new references, and R code included, this book continues to provide a timely introduction to useful tools for multivariate statistical analysis.

Computational Statistics Handbook with MATLAB Third Edition

Author: Wendy L. Martinez
Publisher: CRC Press
ISBN: 1466592745
Format: PDF, ePub
Download Now
A Strong Practical Focus on Applications and Algorithms Computational Statistics Handbook with MATLAB®, Third Edition covers today’s most commonly used techniques in computational statistics while maintaining the same philosophy and writing style of the bestselling previous editions. The text keeps theoretical concepts to a minimum, emphasizing the implementation of the methods. New to the Third Edition This third edition is updated with the latest version of MATLAB and the corresponding version of the Statistics and Machine Learning Toolbox. It also incorporates new sections on the nearest neighbor classifier, support vector machines, model checking and regularization, partial least squares regression, and multivariate adaptive regression splines. Web Resource The authors include algorithmic descriptions of the procedures as well as examples that illustrate the use of algorithms in data analysis. The MATLAB code, examples, and data sets are available online.

Randomization Bootstrap and Monte Carlo Methods in Biology Third Edition

Author: Bryan F.J. Manly
Publisher: CRC Press
ISBN: 1482296411
Format: PDF, ePub
Download Now
Modern computer-intensive statistical methods play a key role in solving many problems across a wide range of scientific disciplines. This new edition of the bestselling Randomization, Bootstrap and Monte Carlo Methods in Biology illustrates the value of a number of these methods with an emphasis on biological applications. This textbook focuses on three related areas in computational statistics: randomization, bootstrapping, and Monte Carlo methods of inference. The author emphasizes the sampling approach within randomization testing and confidence intervals. Similar to randomization, the book shows how bootstrapping, or resampling, can be used for confidence intervals and tests of significance. It also explores how to use Monte Carlo methods to test hypotheses and construct confidence intervals. New to the Third Edition Updated information on regression and time series analysis, multivariate methods, survival and growth data as well as software for computational statistics References that reflect recent developments in methodology and computing techniques Additional references on new applications of computer-intensive methods in biology Providing comprehensive coverage of computer-intensive applications while also offering data sets online, Randomization, Bootstrap and Monte Carlo Methods in Biology, Third Edition supplies a solid foundation for the ever-expanding field of statistics and quantitative analysis in biology.

An Introduction to Statistical Concepts

Author: Debbie L Hahs-Vaughn
Publisher: Routledge
ISBN: 1136490124
Format: PDF, ePub
Download Now
This comprehensive, flexible text is used in both one- and two-semester courses to review introductory through intermediate statistics. Instructors select the topics that are most appropriate for their course. Its conceptual approach helps students more easily understand the concepts and interpret SPSS and research results. Key concepts are simply stated and occasionally reintroduced and related to one another for reinforcement. Numerous examples demonstrate their relevance. This edition features more explanation to increase understanding of the concepts. Only crucial equations are included. In addition to updating throughout, the new edition features: New co-author, Debbie L. Hahs-Vaughn, the 2007 recipient of the University of Central Florida's College of Education Excellence in Graduate Teaching Award. A new chapter on logistic regression models for today's more complex methodologies. More on computing confidence intervals and conducting power analyses using G*Power. Many more SPSS screenshots to assist with understanding how to navigate SPSS and annotated SPSS output to assist in the interpretation of results. Extended sections on how to write-up statistical results in APA format. New learning tools including chapter-opening vignettes, outlines, and a list of key concepts, many more examples, tables, and figures, boxes, and chapter summaries. More tables of assumptions and the effects of their violation including how to test them in SPSS. 33% new conceptual, computational, and all new interpretative problems. A website that features PowerPoint slides, answers to the even-numbered problems, and test items for instructors, and for students the chapter outlines, key concepts, and datasets that can be used in SPSS and other packages, and more. Each chapter begins with an outline, a list of key concepts, and a vignette related to those concepts. Realistic examples from education and the behavioral sciences illustrate those concepts. Each example examines the procedures and assumptions and provides instructions for how to run SPSS, including annotated output, and tips to develop an APA style write-up. Useful tables of assumptions and the effects of their violation are included, along with how to test assumptions in SPSS. 'Stop and Think' boxes provide helpful tips for better understanding the concepts. Each chapter includes computational, conceptual, and interpretive problems. The data sets used in the examples and problems are provided on the web. Answers to the odd-numbered problems are given in the book. The first five chapters review descriptive statistics including ways of representing data graphically, statistical measures, the normal distribution, and probability and sampling. The remainder of the text covers inferential statistics involving means, proportions, variances, and correlations, basic and advanced analysis of variance and regression models. Topics not dealt with in other texts such as robust methods, multiple comparison and nonparametric procedures, and advanced ANOVA and multiple and logistic regression models are also reviewed. Intended for one- or two-semester courses in statistics taught in education and/or the behavioral sciences at the graduate and/or advanced undergraduate level, knowledge of statistics is not a prerequisite. A rudimentary knowledge of algebra is required.

Primer of Applied Regression Analysis of Variance Third Edition

Author: Stanton A. Glantz
Publisher: McGraw Hill Professional
ISBN: 0071822445
Format: PDF, ePub, Mobi
Download Now
A textbook on the use of advanced statistical methods in healthcare sciences Primer of Applied Regression & Analysis of Variance is a textbook especially created for medical, public health, and social and environmental science students who need applied (not theoretical) training in the use of statistical methods. The book has been acclaimed for its user-friendly style that makes complicated material understandable to readers who do not have an extensive math background. The text is packed with learning aids that include chapter-ending summaries and end-of-chapter problems that quickly assess mastery of the material. Examples from biological and health sciences are included to clarify and illustrate key points. The techniques discussed apply to a wide range of disciplines, including social and behavioral science as well as health and life sciences. Typical courses that would use this text include those that cover multiple linear regression and ANOVA. Four completely new chapters Completely updated software information and examples

Nonparametric Statistical Methods

Author: Myles Hollander
Publisher: John Wiley & Sons
ISBN: 1118553292
Format: PDF, ePub, Docs
Download Now
Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.

A Primer on Experiments with Mixtures

Author: John A. Cornell
Publisher: John Wiley & Sons
ISBN: 0470907428
Format: PDF, Docs
Download Now
The concise yet authoritative presentation of key techniques for basic mixtures experiments Inspired by the author's bestselling advanced book on the topic, A Primer on Experiments with Mixtures provides an introductory presentation of the key principles behind experimenting with mixtures. Outlining useful techniques through an applied approach with examples from real research situations, the book supplies a comprehensive discussion of how to design and set up basic mixture experiments, then analyze the data and draw inferences from results. Drawing from his extensive experience teaching the topic at various levels, the author presents the mixture experiments in an easy-to-follow manner that is void of unnecessary formulas and theory. Succinct presentations explore key methods and techniques for carrying out basic mixture experiments, including: Designs and models for exploring the entire simplex factor space, with coverage of simplex-lattice and simplex-centroid designs, canonical polynomials, the plotting of individual residuals, and axial designs Multiple constraints on the component proportions in the form of lower and/or upper bounds, introducing L-Pseudocomponents, multicomponent constraints, and multiple lattice designs for major and minor component classifications Techniques for analyzing mixture data such as model reduction and screening components, as well as additional topics such as measuring the leverage of certain design points Models containing ratios of the components, Cox's mixture polynomials, and the fitting of a slack variable model A review of least squares and the analysis of variance for fitting data Each chapter concludes with a summary and appendices with details on the technical aspects of the material. Throughout the book, exercise sets with selected answers allow readers to test their comprehension of the material, and References and Recommended Reading sections outline further resources for study of the presented topics. A Primer on Experiments with Mixtures is an excellent book for one-semester courses on mixture designs and can also serve as a supplement for design of experiments courses at the upper-undergraduate and graduate levels. It is also a suitable reference for practitioners and researchers who have an interest in experiments with mixtures and would like to learn more about the related mixture designs and models.

Mathematics of Chance

Author: Jirí Andel
Publisher: John Wiley & Sons
ISBN: 0470317914
Format: PDF, ePub, Docs
Download Now
Mathematics of Chance utilizes simple, real-world problems-some of which have only recently been solved-to explain fundamental probability theorems, methods, and statistical reasoning. Jiri Andel begins with a basic introduction to probability theory and its important points before moving on to more specific sections on vital aspects of probability, using both classic and modern problems. Each chapter begins with easy, realistic examples before covering the general formulations and mathematical treatments used. The reader will find ample use for a chapter devoted to matrix games and problem sets concerning waiting, probability calculations, expectation calculations, and statistical methods. A special chapter utilizes problems that relate to areas of mathematics outside of statistics and considers certain mathematical concepts from a probabilistic point of view. Sections and problems cover topics including: * Random walks * Principle of reflection * Probabilistic aspects of records * Geometric distribution * Optimization * The LAD method, and more Knowledge of the basic elements of calculus will be sufficient in understanding most of the material presented here, and little knowledge of pure statistics is required. Jiri Andel has produced a compact reference for applied statisticians working in industry and the social and technical sciences, and a book that suits the needs of students seeking a fundamental understanding of probability theory.

The Fitness of Information

Author: Chaomei Chen
Publisher: John Wiley & Sons
ISBN: 1118594207
Format: PDF, ePub, Mobi
Download Now
Theories and practices to assess critical information in a complex adaptive system Organized for readers to follow along easily, The Fitness of Information: Quantitative Assessments of Critical Evidence provides a structured outline of the key challenges in assessing crucial information in a complex adaptive system. Illustrating a variety of computational and explanatory challenges, the book demonstrates principles and practical implications of exploring and assessing the fitness of information in an extensible framework of adaptive landscapes. The book’s first three chapters introduce fundamental principles and practical examples in connection to the nature of aesthetics, mental models, and the subjectivity of evidence. In particular, the underlying question is how these issues can be addressed quantitatively, not only computationally but also explanatorily. The next chapter illustrates how one can reduce the level of complexity in understanding the structure and dynamics of scientific knowledge through the design and use of the CiteSpace system for visualizing and analyzing emerging trends in scientific literature. The following two chapters explain the concepts of structural variation and the fitness of information in a framework that builds on the idea of fitness landscape originally introduced to study population evolution. The final chapter presents a dual-map overlay technique and demonstrates how it supports a variety of analytic tasks for a new type of portfolio analysis. The Fitness of Information: Quantitative Assessments of Critical Evidence also features: In-depth case studies and examples that characterize far-reaching concepts, illustrate underlying principles, and demonstrate profound challenges and complexities at various levels of analytic reasoning Wide-ranging topics that underline the common theme, from the subjectivity of evidence in criminal trials to detecting early signs of critical transitions and mechanisms behind radical patents An extensible and unifying framework for visual analytics by transforming analytic reasoning tasks to the assessment of critical evidence The Fitness of Information: Quantitative Assessments of Critical Evidence is a suitable reference for researchers, analysts, and practitioners who are interested in analyzing evidence and making decisions with incomplete, uncertain, and even conflicting information. The book is also an excellent textbook for upper-undergraduate and graduate-level courses on visual analytics, information visualization, and business analytics and decision support systems.

Statistical Modeling by Wavelets

Author: Brani Vidakovic
Publisher: John Wiley & Sons
ISBN: 0470317868
Format: PDF, ePub
Download Now
A comprehensive, step-by-step introduction to wavelets in statistics. What are wavelets? What makes them increasingly indispensable in statistical nonparametrics? Why are they suitable for "time-scale" applications? How are they used to solve such problems as denoising, regression, or density estimation? Where can one find up-to-date information on these newly "discovered" mathematical objects? These are some of the questions Brani Vidakovic answers in Statistical Modeling by Wavelets. Providing a much-needed introduction to the latest tools afforded statisticians by wavelet theory, Vidakovic compiles, organizes, and explains in depth research data previously available only in disparate journal articles. He carefully balances both statistical and mathematical techniques, supplementing the material with a wealth of examples, more than 100 illustrations, and extensive references-with data sets and S-Plus wavelet overviews made available for downloading over the Internet. Both introductory and data-oriented modeling topics are featured, including: * Continuous and discrete wavelet transformations. * Statistical optimality properties of wavelet shrinkage. * Theoretical aspects of wavelet density estimation. * Bayesian modeling in the wavelet domain. * Properties of wavelet-based random functions and densities. * Several novel and important wavelet applications in statistics. * Wavelet methods in time series. Accessible to anyone with a background in advanced calculus and algebra, Statistical Modeling by Wavelets promises to become the standard reference for statisticians and engineers seeking a comprehensive introduction to an emerging field.