Municipal Solid Waste to Energy Conversion Processes

Author: Gary C. Young
Publisher: John Wiley & Sons
ISBN: 9781118029275
Format: PDF, ePub
Download Now
A technical and economic review of emerging waste disposal technologies Intended for a wide audience ranging from engineers and academics to decision-makers in both the public and private sectors, Municipal Solid Waste to Energy Conversion Processes: Economic, Technical, and Renewable Comparisons reviews the current state of the solid waste disposal industry. It details how the proven plasma gasification technology can be used to manage Municipal Solid Waste (MSW) and to generate energy and revenues for local communities in an environmentally safe manner with essentially no wastes. Beginning with an introduction to pyrolysis/gasification and combustion technologies, the book provides many case studies on various waste-to-energy (WTE) technologies and creates an economic and technical baseline from which all current and emerging WTE technologies could be compared and evaluated. Topics include: Pyrolysis/gasification technology, the most suitable and economically viable approach for the management of wastes Combustion technology Other renewable energy resources including wind and hydroelectric energy Plasma economics Cash flows as a revenue source for waste solids-to-energy management Plant operations, with an independent case study of Eco-Valley plant in Utashinai, Japan Extensive case studies of garbage to liquid fuels, wastes to electricity, and wastes to power ethanol plants illustrate how currently generated MSW and past wastes in landfills can be processed with proven plasma gasification technology to eliminate air and water pollution from landfills.

Waste to Energy Conversion Technology

Author: Naomi B Klinghoffer
Publisher: Elsevier
ISBN: 0857096362
Format: PDF, Mobi
Download Now
Increasing global consumerism and population has led to an increase in the levels of waste produced. Waste to energy (WTE) conversion technologies can be employed to convert residual wastes into clean energy, rather than sending these wastes directly to landfill. Waste to energy conversion technology explores the systems, technology and impacts of waste to energy conversion. Part one provides an introduction to WTE conversion and reviews the waste hierarchy and WTE systems options along with the corresponding environmental, regulatory and techno-economic issues facing this technology. Part two goes on to explore further specific aspects of WTE systems, engineering and technology and includes chapters on municipal solid waste (MSW) combustion plants and WTE systems for district heating. Finally, part three highlights pollution control systems for waste to energy technologies. Waste to energy conversion technology is a standard reference book for plant managers, building engineers and consultants requiring an understanding of WTE technologies, and researchers, scientists and academics interested in the field. Reviews the waste hierarchy and waste to energy systems options along with the environmental and social impact of WTE conversion plants Explores the engineering and technology behind WTE systems including considerations of municipal solid waste (MSW) its treatment, combustion and gasification Considers pollution control systems for WTE technologies including the transformation of wast combustion facilities from major polluters to pollution sinks

Waste to Energy

Author: Lisa Branchini
Publisher: Springer
ISBN: 3319136089
Format: PDF, Mobi
Download Now
This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanced hybrid technology applications, particularly the Hybrid Combined Cycle concept, are examined in detail, including an illuminating compare-and-contrast study of two basic types of hybrid dual-fuel combined cycle arrangements: steam/water side integrated HCC and windbox repowering.

Gasification of Waste Materials

Author: Simona Ciuta
Publisher: Academic Press
ISBN: 0128127171
Format: PDF, ePub
Download Now
Gasification of Waste Materials: Technologies for Generating Energy, Gas and Chemicals from MSW, Biomass, Non-recycled Plastics, Sludges and Wet Solid Wastes explores the most recent gasification technologies developing worldwide to convert waste solids to energy and synthesis gas and chemical products. The authors examine the thermodynamic aspects, accepted reaction mechanisms and kinetic constraints of using municipal solid waste (MSW), biomass, non-recycled plastics (NRP), sludges and wet solid wastes as feedstock. They identify the distinctions between pyrolysis, gasification, plasma, hydrothermal gasification, and supercritical systems. A comprehensive summary of laboratory and demonstration activities is presented, as well as field scale systems that have been in operation using solid waste streams as input, highlighting their areas of disconnect and alignment. The book also provides a summary of information on emissions from the stack, comparing them with other thermal conversion systems using similar feedstock. It then goes on to assess the areas that must be improved to ensure gasification systems become as successful as combustion systems operating on waste streams, ranging from feedstock processing to gasifier output gas clean-up, downstream system requirements and corrosion. The economics and future projections for waste gasification systems are also discussed. For its consolidation of the current technical knowledge, this text is recommended for engineering researchers, graduate students, industry professionals, municipal engineers and decision makers when planning, designing and deploying waste to energy projects, especially those using MSW as feedstock. Provides field demonstrations of large scale systems, their results and the challenges that need to be overcome when developing commercial applications and possible solutions Presents the most recent technologies in lab and demonstration scale Examines the critical development needs and real life challenges for the deployment of waste to energy technologies Provides information on the economics and sustainability of these technologies, as well as their future perspectives

Waste to Energy Technologies and Global Applications

Author: Efstratios N. Kalogirou
Publisher: CRC Press
ISBN: 1351977911
Format: PDF
Download Now
Through Waste-to-Energy (WtE) technology, plants use waste as a renewable fuel to co-produce electricity, heating, and cooling for urban utilization. This professional book presents the latest developments in WtE technologies and their global applications. The first part of the book covers thermal treatment technologies, including combustion, novel gasification, plasma gasification, and pyrolysis. It then examines 35 real-world WtE case studies from around the world, analyzing technical information behind planning, execution, goals, and national strategies. Results through the years show the benefits of the technology through the life cycle of the products. The book also examines financial and environmental aspects.

Resource Recovery to Approach Zero Municipal Waste

Author: Mohammad J. Taherzadeh
Publisher: CRC Press
ISBN: 148224036X
Format: PDF, Kindle
Download Now
Current development results in a linear flow from raw material to waste, which cannot be sustainable in the long term. Plus, a global population of 7 billion people means that there are 7 billion waste producers in the world. At present, dumping and landfilling are the primary practices for getting rid of municipal solid waste (MSW). However, this waste contains resources that we’ve yet to utilize. To create sustainable societies, we need to approach zero waste by recovering these resources. There are cities and countries where zero waste is close to becoming a reality. Landfilling of organic waste is forbidden in Europe, and countries such as Sweden, Germany, Belgium, and Switzerland have developed a variety of technologies to recover resources from MSW. Resource Recovery to Approach Zero Municipal Waste explores the solid waste management laws and regulations of different countries, comparing the latest resource recovery technologies and offering future perspectives. The book tackles the many technical, social, ecological, economical, and managerial aspects of this complex subject while promoting the development of sustainable societies to achieve a greener global environment.

Alternative Energy Systems and Applications

Author: B. K. Hodge
Publisher: John Wiley & Sons
ISBN: 111910923X
Format: PDF, Docs
Download Now
The comprehensive guide to engineering alternative and renewable energy systems and applications—updated for the latest trends and technologies This book was designed tohelp engineers develop new solutions for the current energy economy. To that end it provides technical discussions, along with numerous real-world examples of virtually all existing alternative energy sources, applications, systems and system components. All chapters focus on first-order engineering calculations, and consider alternative uses of existing and renewable energy resources. Just as important, the author describes how to apply these concepts to the development of new energy solutions. Since the publication of the critically acclaimed first edition of this book, the alternative, renewable and sustainable energy industries have witnessed significant evolution and growth. Hydraulic fracturing, fossil fuel reserve increases, the increasing popularity of hybrid and all-electric vehicles, and the decreasing cost of solar power already have had a significant impact on energy usage patterns worldwide. Updated and revised to reflect those and other key developments, this new edition features expanded coverage of topics covered in the first edition, as well as entirely new chapters on hydraulic fracturing and fossil fuels, hybrid and all-electric vehicles, and more. Begins with a fascinating look at the changing face of global energy economy Features chapters devoted to virtually all sources of alternative energy and energy systems Offers technical discussions of hydropower, wind, passive solar and solar-thermal, photovoltaics, fuel cells, CHP systems, geothermal, ocean energy, biomass, and nuclear Contains updated chapter review questions, homework problems, and a thoroughly revised solutions manual, available on the companion website While Alternative Energy Systems and Applications, Second Edition is an ideal textbook/reference for advanced undergraduate and graduate level engineering courses in energy-related subjects, it is also an indispensable professional resource for engineers and technicians working in areas related to the development of alternative/renewable energy systems.

Municipal Solid Waste Incineration

Author: T. Rand
Publisher: World Bank Publications
ISBN: 9780821346686
Format: PDF, ePub
Download Now
Ever increasing amounts of solid waste and dwindling space for disposal is a problem reaching crisis level in many of the world's largest urban areas. Incineration as an alternative to landfill has come under scrutiny, though the capital and operating costs generally exceed those associated with landfill. This report provides background information for the "Decision-maker' guide to municipal solid waste (MSW) incineration". Key criteria for a solid waste incineration scheme are identified, and the report gives decision makers information on how to investigate and assess the degree to which they are fulfilled.

Progress in Clean Energy Volume 2

Author: Ibrahim Dincer
Publisher: Springer
ISBN: 3319170317
Format: PDF
Download Now
This expansive reference provides readers with the broadest available single-volume coverage of leading-edge advances in the development and optimization of clean energy technologies. From innovative biofuel feed stocks and processing techniques, to novel solar materials with record-breaking efficiencies, remote-sensing for offshore wind turbines to breakthroughs in high performance PEM fuel cell electrode manufacturing, phase change materials in green buildings to bio sorption of pharmaceutical pollutants, the myriad exciting developments in green technology described in this book will provide inspiration and information to researchers, engineers and students working in sustainability around the world.

Integrated Solid Waste Management A Lifecycle Inventory

Author: P.R. White
Publisher: Springer Science & Business Media
ISBN: 1461523699
Format: PDF, Docs
Download Now
Life is often considered to be a journey. The lifecycle of waste can similarly be considered to be a journey from the cradle (when an item becomes valueless and, usually, is placed in the dustbin) to the grave (when value is restored by creating usable material or energy; or the waste is transformed into emissions to water or air, or into inert material placed in a landfill). This preface provides a route map for the journey the reader of this book will undertake. Who? Who are the intended readers of this book? Waste managers (whether in public service or private companies) will find a holistic approach for improving the environmental quality and the economic cost of managing waste. The book contains general principles based on cutting edge experience being developed across Europe. Detailed data and a computer model will enable operations managers to develop data-based improvements to their systems. Producers oj waste will be better able to understand how their actions can influence the operation of environmentally improved waste management systems. Designers oj products and packages will be better able to understand how their design criteria can improve the compatibility of their product or package with developing, environmentally improved waste management systems. Waste data specialists (whether in laboratories, consultancies or environ mental managers of waste facilities) will see how the scope, quantity and quality of their data can be improved to help their colleagues design more effective waste management systems.