Nanoscale Flow

Author: Sarhan M. Musa
Publisher: CRC Press
ISBN: 1351831151
Format: PDF, ePub, Docs
Download Now
Understanding the physical properties and dynamical behavior of nanochannel flows has been of great interest in recent years and is important for the theoretical study of fluid dynamics and engineering applications in physics, chemistry, medicine, and electronics. The flows inside nanoscale pores are also important due to their highly beneficial drag and heat transfer properties. Nanoscale Flow: Advances, Modeling, and Applications presents the latest research in the multidisciplinary area of nanoscale flow. Featuring contributions from top inventors in industry, academia, and government, this comprehensive book: Highlights the current status of research on nucleate pool boiling heat transfer, flow boiling heat transfer, and critical heat flux (CHF) phenomena of nanofluids Describes two novel fractal models for pool boiling heat transfer of nanofluids, including subcooled pool boiling and nucleate pool boiling Explores thermal conductivity enhancement in nanofluids measured with a hot-wire calorimeter Discusses two-phase laminar mixed convection AL2O3–water nanofluid in an elliptic duct Explains the principles of molecular and omics imaging and spectroscopy techniques for cancer detection Analyzes fluid dynamics modeling of the tumor vasculature and drug transport Studies the properties of nanoscale particles and their impact on diagnosis, therapeutics, and theranostics Provides a brief background and review of medical nanoscale flow applications Contains useful appendices of physical constants, equations, common symbols, mathematical formulas, the periodic table, and more A valuable reference for engineers, scientists, and biologists, Nanoscale Flow: Advances, Modeling, and Applications is also designed for researchers, universities, industrial institutions, and government, giving it broad appeal.

Carbon Nanotube Devices

Author:
Publisher: John Wiley & Sons
ISBN: 3527622640
Format: PDF, Kindle
Download Now
Following on from the first AMN volume, this handy reference and textbook examines the topic of nanosystem design in further detail. It explains the physical and chemical basics behind the design and fabrication of nanodevices, covering all important, recent advances in the field, while introducing nanosystems to less experienced readers. The result is an important source for a fast, accurate overview of the state of the art of nanosystem realization, summarizing further important literature.

Nanoparticle Heat Transfer and Fluid Flow

Author: W. J. Minkowycz
Publisher: CRC Press
ISBN: 1439861951
Format: PDF
Download Now
Featuring contributions by leading researchers in the field, Nanoparticle Heat Transfer and Fluid Flow explores heat transfer and fluid flow processes in nanomaterials and nanofluids, which are becoming increasingly important across the engineering disciplines. The book covers a wide range, from biomedical and energy conversion applications to materials properties, and addresses aspects that are essential for further progress in the field, including numerical quantification, modeling, simulation, and presentation. Topics include: A broad review of nanofluid applications, including industrial heat transfer, biomedical engineering, electronics, energy conversion, membrane filtration, and automotive An overview of thermofluids and their importance in biomedical applications and heat-transfer enhancement A deeper look at biomedical applications such as nanoparticle hyperthermia treatments for cancers Issues in energy conversion from dispersed forms to more concentrated and utilizable forms Issues in nanofluid properties, which are less predictable and less repeatable than those of other media that participate in fluid flow and heat transfer Advances in computational fluid dynamic (CFD) modeling of membrane filtration at the microscale The role of nanofluids as a coolant in microchannel heat transfer for the thermal management of electronic equipment The potential enhancement of natural convection due to nanoparticles Examining key topics and applications in nanoscale heat transfer and fluid flow, this comprehensive book presents the current state of the art and a view of the future. It offers a valuable resource for experts as well as newcomers interested in developing innovative modeling and numerical simulation in this growing field.

Nanoscience and its Applications

Author: Osvaldo de Oliveira, Jr
Publisher: William Andrew
ISBN: 0323497810
Format: PDF, Docs
Download Now
Nanoscience and Its Applications explores how nanoscience is used in modern industry to increase product performance, including an understanding of how these materials and systems, at the molecular level, provide novel properties and physical, chemical, and biological phenomena that have been successfully used in innovative ways in a wide range of industries. This book is an important reference source for early-career researchers and practicing materials scientists and engineers seeking a greater understanding on how nanoscience can be used in modern industries. Provides a detailed overview of how nanoscience is used to increase product efficiency in a variety of fields, from agribusiness to medicine, Shows how nanoscience can help product developers increase product performance whilst reducing costs Illustrates how nanoscience has been used innovatively in a great variety of disciplines, giving those working in many different industries ideas as to how nanoscience might answer important questions

Nanometer Structures

Author: Akhlesh Lakhtakia
Publisher: SPIE Press
ISBN: 9780819451866
Format: PDF, ePub, Docs
Download Now
This volume is a researcher's reference handbook to the many aspects of nanometer structures. Although intended as a source for the serious researcher, novices will find a great deal of interesting content. The theories covered include nanostructured thin films, photonic bandgap structures, quantum dots, carbon nanotubes, atomistic techniques, nanomechanics, nanofluidics, and quantum information processing. Modeling and simulation research on these topics have now reached a stage of maturity to merit inclusion as well.

Direct Modeling for Computational Fluid Dynamics

Author: Kun Xu
Publisher: World Scientific
ISBN: 9814623733
Format: PDF, ePub
Download Now
Computational fluid dynamics (CFD) studies the flow motion in a discretized space. Its basic scale resolved is the mesh size and time step. The CFD algorithm can be constructed through a direct modeling of flow motion in such a space. This book presents the principle of direct modeling for the CFD algorithm development, and the construction unified gas-kinetic scheme (UGKS). The UGKS accurately captures the gas evolution from rarefied to continuum flows. Numerically it provides a continuous spectrum of governing equation in the whole flow regimes. Contents:Direct Modeling for Computational Fluid DynamicsIntroduction to Gas Kinetic TheoryIntroduction to Nonequilibrium Flow SimulationsGas Kinetic SchemeUnified Gas Kinetic SchemeLow Speed Microflow StudiesHigh Speed Flow StudiesUnified Gas Kinetic Scheme for Diatomic GasConclusion Readership: Undergraduate and graduate students, researchers and professionals interested in computational fluid dynamics. Key Features:Direct modeling for CFD is self-contained and unified in presentationIt may be used as an advanced textbook by graduate students and even ambitious undergraduates in computational fluid dynamicsIt is also suitable for experts in CFD who wish to have a new understanding of the fundamental problems in the subject and study alternative approaches in CFD algorithm development and applicationThe explanations in the book are detailed enough to capture the interest of the curious reader, and complete enough to provide the necessary background material needed to go further into the subject and explore the research literatureKeywords:Direct Modeling;Unified Gas Kinetic Scheme;Boltzmann Equation;Kinetic Collision Model;Asymptotic Preserving Method

Modeling Multiphase Materials Processes

Author: Manabu Iguchi
Publisher: Springer Science & Business Media
ISBN: 9781441974792
Format: PDF, ePub, Mobi
Download Now
Modeling Multiphase Materials Processes: Gas-Liquid Systems describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of fluid, high temperature, coupled heat and mass transfer, chemical reactions in some cases, and poor wettability of the reactor walls. Also discussed are: solutions based on experimental and numerical modeling of bubbling jet systems, recent advances in the modeling of nanoscale multi-phase phenomena and multiphase flows in micro-scale and nano-scale channels and reactors. Modeling Multiphase Materials Processes: Gas-Liquid Systems will prove a valuable reference for researchers and engineers working in mathematical modeling and materials processing.

Lattice Boltzmann Method and Its Applications in Engineering

Author: Zhaoli Guo
Publisher: World Scientific
ISBN: 9814508314
Format: PDF
Download Now
Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh. This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions. With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method. Contents:IntroductionInitial and Boundary Conditions for Lattice Boltzmann MethodImproved Lattice Boltzmann ModelsSample Applications of LBE for Isothermal FlowsLBE for Low Speed Flows with Heat TransferLBE for Compressible FlowsLBE for Multiphase and Multi-component FlowsLBE for Microscale Gas FlowsOther Applications of LBE Readership: Graduate students, researchers and academics in the field of mechanical engineering, fluid mechanics, MEMS/NEMS, computational physics and applied mathematics. Keywords:Lattice Boltzmann Equation;Kinetic Theory;Computational Fluid Dynamics;Micro Flows;Multiphase Flows

A Guide to Modeling Coastal Morphology

Author: Dano Roelvink
Publisher: World Scientific
ISBN: 9814304255
Format: PDF, ePub, Docs
Download Now
Process-based morphodynamic modelling is one of the relatively new tools at the disposal of coastal scientists, engineers and managers. On paper, it offers the possibility to analyse morphological processes and to investigate the effects of various measures one might consider to alleviate some problems. For these to be applied in practice, a model should be relatively straightforward to set up. It should be accurate enough to represent the details of interest, it should run long enough and robustly to see the real effects happen, and the physical processes represented in such a way that the sediment generally goes in the right direction at the right rate. Next, practitioners must be able to judge if the patterns and outcomes of the model are realistic and finally, translate these colour pictures and vector plots to integrated parameters that are relevant to the client or end user. In a nutshell, this book provides an in-depth review of ways to model coastal processes, including many hands-on exercises.

Two Phase Flow Phase Change and Numerical Modeling

Author: Jeff Winters
Publisher:
ISBN: 9781681176581
Format: PDF, Docs
Download Now
The heat transfer and analysis on laser beam, evaporator coils, shell-and-tube condenser, two phase flow, nanofluids, complex fluids, and on phase change are significant issues in a design of wide range of industrial processes and devices. The most common class of multiphase flows are two-phase flows. A gas-liquid flow is probably the most important form of multiphase flow, and is found widely in a whole range of industrial applications. These include pipeline systems for the transport of oil-gas mixtures, evaporators, boilers, condensers, submerged combustion systems, sewerage treatment plants, air-conditioning and refrigeration plants, and cryogenic plants. Gas-liquid systems are also important in the meteorology and in other natural phenomena. Flows of solids suspended in gases are important in pneumatic conveying and in pulverized fuel combustion. Fluidized beds may also be regarded as a form of gas-solid flow. Liquid-liquid flows are the flow of oil-water mixtures in pipelines and in liquid-liquid solvent extraction mass transfer systems. The most important application of liquid-solid flow is in the hydraulic conveying of solid materials. Liquid-solid suspensions also occur in crystallization systems, and in hydro-cyclones. Historically, probably the most commonly studied cases of two-phase flow are in large-scale power systems. Coal and gas-fired power stations used very large boilers to produce steam for use in turbines.Two Phase Flow, Phase Change and Numerical Modeling covers mainly numerical modeling of heat transfer, two phase flow, nanofluids, and phase change.