Nanostructured Materials for Solar Energy Conversion

Author: Tetsuo Soga
Publisher: Elsevier
ISBN: 9780080468303
Format: PDF, ePub
Download Now
Nanostructured Materials for Solar Energy Conversion covers a wide variety of materials and device types from inorganic materials to organic materials. This book deals with basic semiconductor physics, modelling of nanostructured solar cell, nanostructure of conventional solar cells such as silicon, CIS and CdTe, dye-sensitized solar cell, organic solar cell, photosynthetic materials, fullerene, extremely thin absorber (ETA) solar cell, quantum structured solar cell, intermediate band solar cell, carbon nanotube, etc. including basic principle and the latest results. There are many books written on conventional p-n junction solar cells, but few books focus on new concepts in this area. * Focuses on the use of nanostructured materials for solar energy * Looks at a wide variety of materials and device types * Covers both organic and inorganic materials

Nanoenergy

Author: Flavio L Souza
Publisher: Springer
ISBN: 3319628003
Format: PDF
Download Now
This book discuss the recent advances and future trends of nanoscience in solar energy conversion and storage. This second edition revisits and updates all the previous book chapters, adding the latest advances in the field of Nanoenergy. Four new chapters are included on the principles and fundamentals of artificial photosynthesis using metal transition semiconductors, perovskite solar cells, hydrogen storage and neutralization batteries. More fundamental aspects can be found in this book, increasing the comparison between theory-experimental achievements and latest developments in commercial devices.

Metal Chalcogenide Nanostructures for Renewable Energy Applications

Author: Ahsanulhaq Qurashi
Publisher: John Wiley & Sons
ISBN: 1119008921
Format: PDF, ePub
Download Now
This first ever reference book that focuses on metal chalcogenide semiconductor nanostructures for renewable energy applications encapsulates the state-of-the-art in multidisciplinary research on the metal chalcogenide semiconductor nanostructures (nanocrystals, nanoparticles, nanorods, nanowires, nanobelts, nanoflowers, nanoribbons and more). The properties and synthesis of a class of nanomaterials is essential to renewable energy manufacturing and this book focuses on the synthesis of metal chalcogendie nanostructures, their growth mechanism, optical, electrical, and other important properties and their applications in different diverging fields like photovoltaics, hydrogen production, theromelectrics, lithium battery, energy storage, photocatalysis, sensors. An important reference source for students, scientists, engineers, researchers and industrialists working on nanomaterials-based energy aspects associated with chemistry, physics, materials science, electrical engineering, energy science and technology, and environmental science.

Nanostructured Materials

Author: Gerhard Wilde
Publisher: Elsevier
ISBN: 9780080914237
Format: PDF, ePub, Mobi
Download Now
This book focuses on functional aspects of nanostructured materials that have a high relevance to immediate applications, such as catalysis, energy harvesting, energy storage, optical properties and surface functionalization via self-assembly. Additionally, there are chapters devoted to massive nanostructured materials and composites and covering basic properties and requirements of this new class of engineering materials. Especially the issues concerning stability, reliability and mechanical performance are mandatory aspects that need to be regarded carefully for any nanostructured engineering material.

Nanostructured Materials for Next Generation Energy Storage and Conversion

Author: Fan Li
Publisher: Springer
ISBN: 3662563649
Format: PDF, ePub
Download Now
The energy crisis and pollution have posed significant risks to the environment, transportation, and economy over the last century. Thus, green energy becomes one of the critical global technologies and the use of nanomaterials in these technologies is an important and active research area. This book series presents the progress and opportunities in green energy sustainability. Developments in nanoscaled electrocatalysts, solid oxide and proton exchange membrane fuel cells, lithium ion batteries, and photovoltaic techniques comprise the area of energy storage and conversion. Developments in carbon dioxide (CO2) capture and hydrogen (H2) storage using tunable structured materials are discussed. Design and characterization of new nanoscaled materials with controllable particle size, structure, shape, porosity and band gap to enhance next generation energy systems are also included. The technical topics covered in this series are metal organic frameworks, nanoparticles, nanocomposites, proton exchange membrane fuel cell catalysts, solid oxide fuel cell electrode design, trapping of carbon dioxide, and hydrogen gas storage.

Nanotechnology for Energy Sustainability 3 Volume Set

Author: Baldev Raj
Publisher: John Wiley & Sons
ISBN: 3527340149
Format: PDF, Mobi
Download Now
In three handy volumes, this ready reference provides a detailed overview of nanotechnology as it is applied to energy sustainability. Clearly structured, following an introduction, the first part of the book is dedicated to energy production, renewable energy, energy storage, energy distribution, and energy conversion and harvesting. The second part then goes on to discuss nano-enabled materials, energy conservation and management, technological and intellectual property-related issues and markets and environmental remediation. The text concludes with a look at and recommendations for future technology advances. An essential handbook for all experts in the field - from academic researchers and engineers to developers in industry.

Nanostructured Materials for Electrochemical Energy Production and Storage

Author: Edson Roberto Leite
Publisher: Springer Science & Business Media
ISBN: 9780387493237
Format: PDF, Mobi
Download Now
Here is an authoritative reference from world-renowned research groups for those working in materials science and electrochemistry. The authors describe properties of nanostructured materials that can improve performance in alternative energy devices.

The Chemistry of Nanostructured Materials

Author: Peidong Yang
Publisher: World Scientific
ISBN: 981431305X
Format: PDF, ePub
Download Now
This book is a sequel to the first volume of The Chemistry of Nanostructured Materials. It covers the most exciting developments in the nanostructured materials field for the past five to ten years, with a particular focus on their applications in energy conversion and energy storage. Prominent authors of recognized authority in the field contribute their expertise in the review chapters.

Nanomaterials For Energy Conversion And Storage

Author: Wang Dunwei
Publisher: World Scientific
ISBN: 1786343649
Format: PDF, Mobi
Download Now
The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. This book looks at the most recent research on the topic, with particular focus on artificial photosynthesis and lithium-ion batteries as the most promising technologies to date. Research on the broad subject of energy conversion and storage calls for expertise from a wide range of backgrounds, from the most fundamental perspectives of the key catalytic processes at the molecular level to device scale engineering and optimization. Although the nature of the processes dictates that electrochemistry is a primary characterization tool, due attention is given to advanced techniques such as synchrotron studies in operando. These studies look at the gap between the performance of current technology and what is needed for the future, for example how to improve on the lithium-ion battery and to go beyond its capabilities. Suitable for students and practitioners in the chemical, electrochemical, and environmental sciences, Nanomaterials for Energy Conversion and Storage provides the information needed to find scalable, economically viable and safe solutions for sustainable energy. Contents: The Principle of Photoelectrochemical Water Splitting (Peiyan Ma and Dunwei Wang)Semiconducting Photocatalysis for Solar Hydrogen Conversion (Shaohua Shen and Jie Chen)Visible-Light-Driven Photocatalysis (Qingzhe Zhang, Yanlong Liu, Zhenhe Xu, Yue Zhao, Mohamed Chaker and Dongling Ma)Metal-Nitride Nanostructures: Emerging Catalysts for Artificial Photosynthesis (Md Golam Kibria, Bandar AlOtaibi and Zetian Mi)Surface Engineering of Semiconductors for Photoelectrochemical Water Splitting (Gongming Wang, Yi Yang and Yat Li)Photoanodic and Photocathodic Materials Applied for Free-Running Solar Water Splitting Devices (Miao Zhong, Hiroyuki Kaneko, Taro Yamada and Kazunari Domen)Electrocatalytic Processes in Energy Technologies (Yang Huang, Min Zeng, Qiufang Gong and Yanguang Li)Soft X-Ray Spectroscopy on Photocatalysis (Yi-Sheng Liu, Cheng-Hao Chuang and Jinghua Guo)Photoelectrochemical Tools for the Assessment of Energy Conversion Devices (Isaac Herraiz-Cardona and Sixto Gimenez)Fundamentals of Rechargable Batteries and Electrochemical Potentials of Electrode Materials (Chaofeng Liu and Guozhong Cao)Revitalized Interest in Vanadium Pentoxide as Cathode Material for Alkali-Ion Batteries (Yanwei Li, Jinhuan Yao, Robert C Massé, Evan Uchaker and Guozhong Cao)Tin-Based Compounds as Anode Materials for Lithium-Ion Storage (Ming Zhang and Guozhong Cao)Beyond Li-Ion: Electrode Materials for Sodium- and Magnesium-Ion Batteries (Robert Massé, Evan Uchaker and Guozhong Cao)Nanomaterials and Nanostructures for Regulating Ions and Electron Transport in Advanced Energy Storage Devices (Yu Wang and Wei-Hong Zhong) Readership: Students, researchers and practitioners in the chemical, electrochemical, and environmental sciences. Keywords: Nanomaterials;Lithium-Ion Batteries;Electrochemistry;Energy Conversion;Energy Storage;Artificial PhotosynthesisReview:0

Tuning Energy Transport in Solar Thermal Systems Using Nanostructured Materials

Author: Andrej Lenert
Publisher:
ISBN:
Format: PDF, Mobi
Download Now
Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured materials allow us to tune the spectral properties and heat transfer behavior to enable such systems. However, under high temperature conditions, thermal management, system optimization and minimization of parasitic losses are necessary to achieve competitive solar power generation. This thesis seeks to achieve spectral control and thermal management through manipulation of nanostructured materials. First, this thesis presents the design and development of a nanophotonic solar thermophotovoltaic (STPV) that harnesses the full spectrum of the sun, in a solid-state and scalable way. Through device optimization and control over spectral properties at high temperatures (~1300 K), a device that is 3 times more efficient than previous STPVs is demonstrated. To achieve this result, a framework was developed to identify which parts of the spectrum are critical and to guide the design of nanostructured absorbers and emitters for STPVs. The work elucidated the relative importance of spectral properties depending on the operating regime and device geometry. Carbon nanotubes and a silicon/silicon dioxide photonic crystal were used to target critical properties in the high solar concentration regime; and two-dimensional metallic photonic crystals were used to target critical properties in the low solar concentration regime. A versatile experimental platform was developed to interchangeably test different STPV components without sacrificing experimental control. In addition to demonstrating significant improvements in STPV efficiency, an experimental procedure to quantify the energy conversion and loss mechanisms helped improve and validate STPV models. Using these validated models, this thesis presents a scaled-up device that can achieve 20% efficiencies in the near term. With potential integration of thermal-based storage, such a technology can supply power efficiently and on-demand, which will have significant implications for adoption of STPVs. Second, the thesis shifts focus away from solid-state systems to thermal-fluid systems. A new figure of merit was proposed to capture the thermal storage, heat transfer and pumping power requirements for a heat transfer fluid is a solar thermal system. Existing and emerging fluids were evaluated based on the new metric as well as practical issues. Finally, sub-micron phase change material (PCM) suspensions are investigated for simultaneous enhancement of local heat transfer and thermal storage capacity in solar thermal systems. A physical model was developed to explain the local heat transfer characteristics of a flowing PCM suspension undergoing melting. A mechanism for enhancement of heat transfer through.control over the distribution of PCM particles inside a channel was discovered and explained. Together, this thesis makes significant contributions towards improving our understanding of the role and the effective use of nanostructured materials in solar thermal systems.