Natural Convection from Circular Cylinders

Author: Sandra Boetcher
Publisher: Springer
ISBN: 3319081322
Format: PDF
Download Now
This book presents a concise, yet thorough, reference for all heat transfer coefficient correlations and data for all types of cylinders: vertical, horizontal, and inclined. This book covers all natural convection heat transfer laws for vertical and inclined cylinders and is an excellent resource for engineers working in the area of heat transfer engineering.

Boiling

Author: Yasuo Koizumi
Publisher: Elsevier
ISBN: 0081011172
Format: PDF
Download Now
Boiling: Research and Advances presents the latest developments and improvements in the technologies, instrumentation, and equipment surrounding boiling. Presented by the Japan Society of Mechanical Engineers, the book takes a holistic approach, first providing principles, and then numerous practical applications that consider size scales. Through six chapters, the book covers contributed sections from knowledgeable specialists on various topics, ranging from outlining boiling phenomena and heat transfer characteristics, to the numerical simulation of liquid-gas two phase flow. It summarizes, in a single volume, the state-of-the-art in boiling heat transfer and provides a valuable resource for thermal engineers and practitioners working in the thermal sciences and thermal engineering. Explores the most recent advancements in boiling research and technology from the last twenty years Provides section content written by contributing experts in their respective research areas Shares research being conducted and advancements being made on boiling and heat transfer in Japan, one of the major research hubs in this field

Natural Convective Heat Transfer from Short Inclined Cylinders

Author: Patrick H. Oosthuizen
Publisher: Springer Science & Business Media
ISBN: 3319024590
Format: PDF, Docs
Download Now
Natural Convective Heat Transfer from Short Inclined Cylinders examines a heat transfer situation of significant, practical importance not adequately dealt with in existing textbooks or in any widely available review papers. Specifically, the book introduces the reader to recent studies of natural convection from short cylinders mounted on a flat insulated base where there is an “exposed” upper surface. The author considers the effects of the cylinder cross-sectional shape, the cylinder inclination angle, and the length-to-cross sectional size of the cylinder. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed. This book is ideal for professionals involved with thermal management and related systems, researchers, and graduate students in the field of natural convective heat transfer, instructors in graduate level courses in convective heat transfer.

Modeling Approaches to Natural Convection in Porous Media

Author: Yan Su
Publisher: Springer
ISBN: 3319142372
Format: PDF, Kindle
Download Now
This book provides an overview of the field of flow and heat transfer in porous medium and focuses on presentation of a generalized approach to predict drag and convective heat transfer within porous medium of arbitrary microscopic geometry, including reticulated foams and packed beds. Practical numerical methods to solve natural convection problems in porous media will be presented with illustrative applications for filtrations, thermal storage and solar receivers.

Imaging Heat and Mass Transfer Processes

Author: Pradipta Kumar Panigrahi
Publisher: Springer Science & Business Media
ISBN: 1461447909
Format: PDF, ePub
Download Now
Imaging Heat and Mass Transfer Processes: Visualization and Analysis applies Schlieren and shadowgraph techniques to complex heat and mass transfer processes. Several applications are considered where thermal and concentration fields play a central role. These include vortex shedding and suppression from stationary and oscillating bluff bodies such as cylinders, convection around crystals growing from solution, and buoyant jets. Many of these processes are unsteady and three dimensional. The interpretation and analysis of images recorded are discussed in the text.

Next Generation Microchannel Heat Exchangers

Author: Michael Ohadi
Publisher: Springer Science & Business Media
ISBN: 1461407796
Format: PDF, ePub
Download Now
In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature. Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

Boiling Heat Transfer in Dilute Emulsions

Author: Matthew Lind Roesle
Publisher: Springer Science & Business Media
ISBN: 146144621X
Format: PDF, Mobi
Download Now
Boiling Heat Transfer in Dilute Emulsions synthesizes recent advances and established understanding on the subject of boiling in dilute emulsions. Experimental results from various sources are collected and analyzed, including contemporary experiments that correlate visualization with heat transfer data. Published models of boiling heat transfer in dilute emulsions, and their implementation, are described and assessed against experimental data.

Schlieren and Shadowgraph Methods in Heat and Mass Transfer

Author: Pradipta K. Panigrahi
Publisher: Springer Science & Business Media
ISBN: 1461445353
Format: PDF, ePub, Mobi
Download Now
Schlieren and Shadowgraph Methods in Heat and Mass Transfer lays out the fundamentals of refractive index based imaging techniques, optical configurations, image analysis, and three dimensional reconstructions. The present monograph aims at temperature and concentration measurements in transparent media using ray bending effects in a variable refractive index field. Data analysis procedure for three-dimensional reconstruction of temperature and concentration field using images at different view angles is presented. Test cases illustrating the validation of the quantitative analysis procedure are presented.

Stability of Non Linear Constitutive Formulations for Viscoelastic Fluids

Author: Dennis A. Siginer
Publisher: Springer Science & Business Media
ISBN: 3319024175
Format: PDF, Kindle
Download Now
Stability of Non-linear Constitutive Formulations for Viscoelastic Fluids provides a complete and up-to-date view of the field of constitutive equations for flowing viscoelastic fluids, in particular on their non-linear behavior, the stability of these constitutive equations that is their predictive power, and the impact of these constitutive equations on the dynamics of viscoelastic fluid flow in tubes. This book gives an overall view of the theories and attendant methodologies developed independently of thermodynamic considerations as well as those set within a thermodynamic framework to derive non-linear rheological constitutive equations for viscoelastic fluids. Developments in formulating Maxwell-like constitutive differential equations as well as single integral constitutive formulations are discussed in the light of Hadamard and dissipative type of instabilities.

Thermal Effects in Supercapacitors

Author: Guoping Xiong
Publisher: Springer
ISBN: 3319202421
Format: PDF, Docs
Download Now
This Brief reviews contemporary research conducted in university and industry laboratories on thermal management in electrochemical energy storage systems (capacitors and batteries) that have been widely used as power sources in many practical applications, such as automobiles, hybrid transport, renewable energy installations, power backup and electronic devices. Placing a particular emphasis on supercapacitors, the authors discuss how supercapacitors, or ultra capacitors, are complementing and replacing, batteries because of their faster power delivery, longer life cycle and higher coulombic efficiency, while providing higher energy density than conventional electrolytic capacitors. Recent advances in both macro- and micro capacitor technologies are covered. The work facilitates systematic understanding of thermal transport in such devices that can help develop better power management systems.