Natural Language Understanding

Author: James Allen
Publisher: Benjamin-Cummings Publishing Company
ISBN: 9780805303308
Format: PDF, ePub, Mobi
Download Now
From a leading authority in artificial intelligence, this book delivers a synthesis of the major modern techniques and the most current research in natural language processing. The approach is unique in its coverage of semantic interpretation and discourse alongside the foundational material in syntactic processing.

Pragmatics and Natural Language Understanding

Author: Georgia M. Green
Publisher: Routledge
ISBN: 1136492828
Format: PDF, Mobi
Download Now
This book differs from other introductions to pragmatics in approaching the problems of interpreting language use in terms of interpersonal modelling of beliefs and intentions. It is intended to make issues involved in language understanding, such as speech, text, and discourse, accessible to the widest group possible -- not just specialists in linguistics or communication theorists -- but all scholars and researchers whose enterprises depend on having a useful model of how communicative agents understand utterances and expect their own utterances to be understood. Based on feedback from readers over the past seven years, explanations in every chapter have been improved and updated in this thoroughly revised version of the original text published in 1989. The most extensive revisions concern the relevance of technical notions of mutual and normal belief, and the futility of using the notion 'null context' to describe meaning. In addition, the discussion of implicature now includes an extended explication of "Grice's Cooperative Principle" which attempts to put it in the context of his theory of meaning and rationality, and to preclude misinterpretations which it has suffered over the past 20 years. The revised chapter exploits the notion of normal belief to improve the account of conversational implicature.

Foundations of Statistical Natural Language Processing

Author: Christopher D.. Manning
Publisher: MIT Press
ISBN: 9780262133609
Format: PDF, Kindle
Download Now
An introduction to statistical natural language processing (NLP). The text contains the theory and algorithms needed for building NLP tools. Topics covered include: mathematical and linguistic foundations; statistical methods; collocation finding; word sense disambiguation; and probalistic parsing.

Natural Language Processing with Java

Author: Richard M. Reese
Publisher: Packt Publishing Ltd
ISBN: 1788993063
Format: PDF, Kindle
Download Now
Explore various approaches to organize and extract useful text from unstructured data using Java Key Features Use deep learning and NLP techniques in Java to discover hidden insights in text Work with popular Java libraries such as CoreNLP, OpenNLP, and Mallet Explore machine translation, identifying parts of speech, and topic modeling Book Description Natural Language Processing (NLP) allows you to take any sentence and identify patterns, special names, company names, and more. The second edition of Natural Language Processing with Java teaches you how to perform language analysis with the help of Java libraries, while constantly gaining insights from the outcomes. You’ll start by understanding how NLP and its various concepts work. Having got to grips with the basics, you’ll explore important tools and libraries in Java for NLP, such as CoreNLP, OpenNLP, Neuroph, and Mallet. You’ll then start performing NLP on different inputs and tasks, such as tokenization, model training, parts-of-speech and parsing trees. You’ll learn about statistical machine translation, summarization, dialog systems, complex searches, supervised and unsupervised NLP, and more. By the end of this book, you’ll have learned more about NLP, neural networks, and various other trained models in Java for enhancing the performance of NLP applications. What you will learn Understand basic NLP tasks and how they relate to one another Discover and use the available tokenization engines Apply search techniques to find people, as well as things, within a document Construct solutions to identify parts of speech within sentences Use parsers to extract relationships between elements of a document Identify topics in a set of documents Explore topic modeling from a document Who this book is for Natural Language Processing with Java is for you if you are a data analyst, data scientist, or machine learning engineer who wants to extract information from a language using Java. Knowledge of Java programming is needed, while a basic understanding of statistics will be useful but not mandatory.

Graph based Natural Language Processing and Information Retrieval

Author: Rada Mihalcea
Publisher: Cambridge University Press
ISBN: 1139498827
Format: PDF, ePub, Mobi
Download Now
Graph theory and the fields of natural language processing and information retrieval are well-studied disciplines. Traditionally, these areas have been perceived as distinct, with different algorithms, different applications and different potential end-users. However, recent research has shown that these disciplines are intimately connected, with a large variety of natural language processing and information retrieval applications finding efficient solutions within graph-theoretical frameworks. This book extensively covers the use of graph-based algorithms for natural language processing and information retrieval. It brings together topics as diverse as lexical semantics, text summarization, text mining, ontology construction, text classification and information retrieval, which are connected by the common underlying theme of the use of graph-theoretical methods for text and information processing tasks. Readers will come away with a firm understanding of the major methods and applications in natural language processing and information retrieval that rely on graph-based representations and algorithms.

Natural Language Processing and Computational Linguistics

Author: Mohamed Zakaria Kurdi
Publisher: John Wiley & Sons
ISBN: 1119145570
Format: PDF, ePub, Docs
Download Now
Natural language processing (NLP) is a scientific discipline which is found at the interface of computer science, artificial intelligence and cognitive psychology. Providing an overview of international work in this interdisciplinary field, this book gives the reader a panoramic view of both early and current research in NLP. Carefully chosen multilingual examples present the state of the art of a mature field which is in a constant state of evolution. In four chapters, this book presents the fundamental concepts of phonetics and phonology and the two most important applications in the field of speech processing: recognition and synthesis. Also presented are the fundamental concepts of corpus linguistics and the basic concepts of morphology and its NLP applications such as stemming and part of speech tagging. The fundamental notions and the most important syntactic theories are presented, as well as the different approaches to syntactic parsing with reference to cognitive models, algorithms and computer applications.

Speech and Language Processing

Author: Daniel Jurafsky
Publisher: Pearson
ISBN: 0133252930
Format: PDF, ePub, Mobi
Download Now
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For undergraduate or advanced undergraduate courses in Classical Natural Language Processing, Statistical Natural Language Processing, Speech Recognition, Computational Linguistics, and Human Language Processing. An explosion of Web-based language techniques, merging of distinct fields, availability of phone-based dialogue systems, and much more make this an exciting time in speech and language processing. The first of its kind to thoroughly cover language technology – at all levels and with all modern technologies – this text takes an empirical approach to the subject, based on applying statistical and other machine-learning algorithms to large corporations. The authors cover areas that traditionally are taught in different courses, to describe a unified vision of speech and language processing. Emphasis is on practical applications and scientific evaluation. An accompanying Website contains teaching materials for instructors, with pointers to language processing resources on the Web. The Second Edition offers a significant amount of new and extended material. Supplements: Click on the "Resources" tab to View Downloadable Files: Solutions Power Point Lecture Slides - Chapters 1-5, 8-10, 12-13 and 24 Now Available! For additional resourcse visit the author website: http://www.cs.colorado.edu/~martin/slp.html

Linguistic Fundamentals for Natural Language Processing

Author: Emily M. Bender
Publisher: Morgan & Claypool Publishers
ISBN: 1627050124
Format: PDF, ePub, Mobi
Download Now
Many NLP tasks have at their core a subtask of extracting the dependencies—who did what to whom—from natural language sentences. This task can be understood as the inverse of the problem solved in different ways by diverse human languages, namely, how to indicate the relationship between different parts of a sentence. Understanding how languages solve the problem can be extremely useful in both feature design and error analysis in the application of machine learning to NLP. Likewise, understanding cross-linguistic variation can be important for the design of MT systems and other multilingual applications. The purpose of this book is to present in a succinct and accessible fashion information about the morphological and syntactic structure of human languages that can be useful in creating more linguistically sophisticated, more language-independent, and thus more successful NLP systems. Table of Contents: Acknowledgments / Introduction/motivation / Morphology: Introduction / Morphophonology / Morphosyntax / Syntax: Introduction / Parts of speech / Heads, arguments, and adjuncts / Argument types and grammatical functions / Mismatches between syntactic position and semantic roles / Resources / Bibliography / Author's Biography / General Index / Index of Languages

Natural Language Processing with Python

Author: Steven Bird
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555717
Format: PDF, ePub
Download Now
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Representation and Inference for Natural Language

Author: Patrick Blackburn
Publisher: Stanford Univ Center for the Study
ISBN: 9781575864969
Format: PDF
Download Now
How can computers distinguish the coherent from the unintelligible, recognize new information in a sentence, or draw inferences from a natural language passage? Computational semantics is an exciting new field that seeks answers to these questions, and this volume is the first textbook wholly devoted to this growing subdiscipline. The book explains the underlying theoretical issues and fundamental techniques for computing semantic representations for fragments of natural language. This volume will be an essential text for computer scientists, linguists, and anyone interested in the development of computational semantics.