Nonlinear and adaptive control design

Author: Miroslav Krstić
Publisher: Wiley-Interscience
ISBN:
Format: PDF, Docs
Download Now
Using a pedagogical style along with detailed proofs and illustrative examples, this book opens a view to the largely unexplored area of nonlinear systems with uncertainties. The focus is on adaptive nonlinear control results introduced with the new recursive design methodology--adaptive backstepping. Describes basic tools for nonadaptive backstepping design with state and output feedbacks.

Nonlinear and Adaptive Control with Applications

Author: Alessandro Astolfi
Publisher: Springer Science & Business Media
ISBN: 9781848000667
Format: PDF, ePub
Download Now
The authors here provide a detailed treatment of the design of robust adaptive controllers for nonlinear systems with uncertainties. They employ a new tool based on the ideas of system immersion and manifold invariance. New algorithms are delivered for the construction of robust asymptotically-stabilizing and adaptive control laws for nonlinear systems. The methods proposed lead to modular schemes that are easier to tune than their counterparts obtained from Lyapunov redesign.

Nonlinear and Adaptive Control Systems

Author: Zhengtao Ding
Publisher: IET
ISBN: 1849195749
Format: PDF, Docs
Download Now
Nonlinear and Adaptive Control Systems treats nonlinear control and adaptive control in a unified framework, presenting the major results at a moderate mathematical level, suitable to MSc students and engineers with undergraduate degrees.

Adaptive Control Design and Analysis

Author: Gang Tao
Publisher: John Wiley & Sons
ISBN: 9780471274520
Format: PDF, ePub
Download Now
Annotation "Today, adaptive control theory has grown to be a rigorous and mature discipline. As the advantages of adaptive systems for developing advanced applications grow apparent, adaptive control is becoming more popular in many fields of engineering and science. Using a simple, balanced, and harmonious style, this book provides a convenient introduction to the subject and improves one's understanding of adaptive control theory." "As either a textbook or reference, this self-contained tutorial of adaptive control design and analysis is ideal for practicing engineers, researchers, and graduate students alike."--BOOK JACKET. Title Summary field provided by Blackwell North America, Inc. All Rights Reserved.

Modeling and Adaptive Nonlinear Control of Electric Motors

Author: Farshad Khorrami
Publisher: Springer Science & Business Media
ISBN: 9783540009368
Format: PDF, ePub
Download Now
In this book, modeling and control design of electric motors, namely step motors, brushless DC motors and induction motors, are considered. The book focuses on recent advances on feedback control designs for various types of electric motors, with a slight emphasis on stepper motors. For this purpose, the authors explore modeling of these devices to the extent needed to provide a high-performance controller, but at the same time one amenable to model-based nonlinear designs. The control designs focus primarily on recent robust adaptive nonlinear controllers to attain high performance. It is shown that the adaptive robust nonlinear controller on its own achieves reasonably good performance without requiring the exact knowledge of motor parameters. While carefully tuned classical controllers often achieve required performance in many applications, it is hoped that the advocated robust and adaptive designs will lead to standard universal controllers with minimal need for fine tuning of control parameters.

Robust and Adaptive Control

Author: Eugene Lavretsky
Publisher: Springer Science & Business Media
ISBN: 1447143965
Format: PDF, Docs
Download Now
Robust and Adaptive Control shows the reader how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications the focus of the book is primarily on continuous-dynamical systems. The text is a three-part treatment, beginning with robust and optimal linear control methods and moving on to a self-contained presentation of the design and analysis of model reference adaptive control (MRAC) for nonlinear uncertain dynamical systems. Recent extensions and modifications to MRAC design are included, as are guidelines for combining robust optimal and MRAC controllers. Features of the text include: · case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; · detailed background material for each chapter to motivate theoretical developments; · realistic examples and simulation data illustrating key features of the methods described; and · problem solutions for instructors and MATLAB® code provided electronically. The theoretical content and practical applications reported address real-life aerospace problems, being based on numerous transitions of control-theoretic results into operational systems and airborne vehicles that are drawn from the authors’ extensive professional experience with The Boeing Company. The systems covered are challenging, often open-loop unstable, with uncertainties in their dynamics, and thus requiring both persistently reliable control and the ability to track commands either from a pilot or a guidance computer. Readers are assumed to have a basic understanding of root locus, Bode diagrams, and Nyquist plots, as well as linear algebra, ordinary differential equations, and the use of state-space methods in analysis and modeling of dynamical systems. Robust and Adaptive Control is intended to methodically teach senior undergraduate and graduate students how to construct stable and predictable control algorithms for realistic industrial applications. Practicing engineers and academic researchers will also find the book of great instructional value.