Nonlinear Ordinary Differential Equations

Author: Dominic Jordan
Publisher: Oxford University Press on Demand
ISBN: 0199208247
Format: PDF, ePub
Download Now
Thoroughly updated and expanded 4th edition of the classic text, including numerous worked examples, diagrams and exercises. An ideal resource for students and lecturers in engineering, mathematics and the sciences it is published alongside a separate Problems and Solutions Sourcebook containing over 500 problems and fully-worked solutions.

Nonlinear Ordinary Differential Equations

Author: Martin Hermann
Publisher: Springer
ISBN: 813222812X
Format: PDF
Download Now
The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march method. This book comprehensively investigates various new analytical and numerical approximation techniques that are used in solving nonlinear-oscillator and structural-system problems. Students often rely on the finite element method to such an extent that on graduation they have little or no knowledge of alternative methods of solving problems. To rectify this, the book introduces several new approximation techniques.

Nonlinear Ordinary Differential Equations An Introduction for Scientists and Engineers

Author: Dominic Jordan
Publisher: OUP Oxford
ISBN: 0199208247
Format: PDF, Kindle
Download Now
This is a thoroughly updated and expanded 4th edition of the classic text Nonlinear Ordinary Differential Equations by Dominic Jordan and Peter Smith. Including numerous worked examples and diagrams, further exercises have been incorporated into the text and answers are provided at the back of the book. Topics include phase plane analysis, nonlinear damping, small parameter expansions and singular perturbations, stability, Liapunov methods, Poincare sequences, homoclinicbifurcation and Liapunov exponents.Over 500 end-of-chapter problems are also included and as an additional resource fully-worked solutions to these are provided in the accompanying text Nonlinear Ordinary Differential Equations: Problems and Solutions, (OUP, 2007).Both texts cover a wide variety of applications whilst keeping mathematical prequisites to a minimum making these an ideal resource for students and lecturers in engineering, mathematics and the sciences.

Partielle Differentialgleichungen

Author: Walter A. Strauss
Publisher: Springer-Verlag
ISBN: 366312486X
Format: PDF, ePub
Download Now
Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

Ordinary and Partial Differential Equations

Author: Victor Henner
Publisher: CRC Press
ISBN: 1466515031
Format: PDF, ePub
Download Now
Covers ODEs and PDEs-in One TextbookUntil now, a comprehensive textbook covering both ordinary differential equations (ODEs) and partial differential equations (PDEs) didn't exist. Fulfilling this need, Ordinary and Partial Differential Equations provides a complete and accessible course on ODEs and PDEs using many examples and exercises as well as

Mathematical Methods for Geophysics and Space Physics

Author: William I. Newman
Publisher: Princeton University Press
ISBN: 1400882826
Format: PDF, ePub, Docs
Download Now
Graduate students in the natural sciences—including not only geophysics and space physics but also atmospheric and planetary physics, ocean sciences, and astronomy—need a broad-based mathematical toolbox to facilitate their research. In addition, they need to survey a wider array of mathematical methods that, while outside their particular areas of expertise, are important in related ones. While it is unrealistic to expect them to develop an encyclopedic knowledge of all the methods that are out there, they need to know how and where to obtain reliable and effective insights into these broader areas. Here at last is a graduate textbook that provides these students with the mathematical skills they need to succeed in today's highly interdisciplinary research environment. This authoritative and accessible book covers everything from the elements of vector and tensor analysis to ordinary differential equations, special functions, and chaos and fractals. Other topics include integral transforms, complex analysis, and inverse theory; partial differential equations of mathematical geophysics; probability, statistics, and computational methods; and much more. Proven in the classroom, Mathematical Methods for Geophysics and Space Physics features numerous exercises throughout as well as suggestions for further reading. Provides an authoritative and accessible introduction to the subject Covers vector and tensor analysis, ordinary differential equations, integrals and approximations, Fourier transforms, diffusion and dispersion, sound waves and perturbation theory, randomness in data, and a host of other topics Features numerous exercises throughout Ideal for students and researchers alike An online illustration package is available to professors

Integral Transforms and Their Applications Third Edition

Author: Lokenath Debnath
Publisher: CRC Press
ISBN: 1482223589
Format: PDF, Docs
Download Now
Integral Transforms and Their Applications, Third Edition covers advanced mathematical methods for many applications in science and engineering. The book is suitable as a textbook for senior undergraduate and first-year graduate students and as a reference for professionals in mathematics, engineering, and applied sciences. It presents a systematic development of the underlying theory as well as a modern approach to Fourier, Laplace, Hankel, Mellin, Radon, Gabor, wavelet, and Z transforms and their applications. New to the Third Edition New material on the historical development of classical and modern integral transforms New sections on Fourier transforms of generalized functions, the Poisson summation formula, the Gibbs phenomenon, and the Heisenberg uncertainty principle Revised material on Laplace transforms and double Laplace transforms and their applications New examples of applications in mechanical vibrations, electrical networks, quantum mechanics, integral and functional equations, fluid mechanics, mathematical statistics, special functions, and more New figures that facilitate a clear understanding of physical explanations Updated exercises with solutions, tables of integral transforms, and bibliography Through numerous examples and end-of-chapter exercises, this book develops readers’ analytical and computational skills in the theory and applications of transform methods. It provides accessible working knowledge of the analytical methods and proofs required in pure and applied mathematics, physics, and engineering, preparing readers for subsequent advanced courses and research in these areas.