## Nonlinear Problems in Abstract Cones

Author: Dajun Guo
ISBN: 1483261905
Format: PDF

Notes and Reports in Mathematics in Science and Engineering, Volume 5: Nonlinear Problems in Abstract Cones presents the investigation of nonlinear problems in abstract cones. This book uses the theory of cones coupled with the fixed point index to investigate positive fixed points of various classes of nonlinear operators. Organized into four chapters, this volume begins with an overview of the fundamental properties of cones coupled with the fixed point index. This text then employs the fixed point theory developed to discuss positive solutions of nonlinear integral equations. Other chapters consider several examples from integral and differential equations to illustrate the abstract results. This book discusses as well the fixed points of increasing and decreasing operators. The final chapter deals with the development of the theory of nonlinear differential equations in cones. This book is a valuable resource for graduate students in mathematics. Mathematicians and researchers will also find this book useful.

## Cones and Duality

Author: Charalambos D. Aliprantis
Publisher: American Mathematical Soc.
ISBN: 0821841467
Format: PDF, Docs

Ordered vector spaces and cones made their debut in mathematics at the beginning of the twentieth century. They were developed in parallel (but from a different perspective) with functional analysis and operator theory. Before the 1950s, ordered vector spaces appeared in the literature in a fragmented way. Their systematic study began around the world after 1950 mainly through the efforts of the Russian, Japanese, German, and Dutch schools. Since cones are being employed to solve optimization problems, the theory of ordered vector spaces is an indispensable tool for solving a variety of applied problems appearing in several diverse areas, such as engineering, econometrics, and the social sciences. For this reason this theory plays a prominent role not only in functional analysis but also in a wide range of applications. This is a book about a modern perspective on cones and ordered vector spaces. It includes material that has not been presented earlier in a monograph or a textbook. With many exercises of varying degrees of difficulty, the book is suitable for graduate courses. Most of the new topics currently discussed in the book have their origins in problems from economics and finance. Therefore, the book will be valuable to any researcher and graduate student who works in mathematics, engineering, economics, finance, and any other field that uses optimization techniques.

## Nonlinear Functional Analysis in Banach Spaces and Banach Algebras

Author: Aref Jeribi
Publisher: CRC Press
ISBN: 1498733891
Format: PDF, Mobi

Uncover the Useful Interactions of Fixed Point Theory with Topological Structures Nonlinear Functional Analysis in Banach Spaces and Banach Algebras: Fixed Point Theory under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications is the first book to tackle the topological fixed point theory for block operator matrices with nonlinear entries in Banach spaces and Banach algebras. The book provides researchers and graduate students with a unified survey of the fundamental principles of fixed point theory in Banach spaces and algebras. The authors present several extensions of Schauder’s and Krasnosel’skii’s fixed point theorems to the class of weakly compact operators acting on Banach spaces and algebras, particularly on spaces satisfying the Dunford–Pettis property. They also address under which conditions a 2×2 block operator matrix with single- and multi-valued nonlinear entries will have a fixed point. In addition, the book describes applications of fixed point theory to a wide range of diverse equations, including transport equations arising in the kinetic theory of gas, stationary nonlinear biological models, two-dimensional boundary-value problems arising in growing cell populations, and functional systems of integral equations. The book focuses on fixed point results under the weak topology since these problems involve the loss of compactness of mappings and/or the missing geometric and topological structure of their underlying domain.

## Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems

Author: Leszek Gasinski
Publisher: CRC Press
ISBN: 9781420035032
Format: PDF, Kindle

Starting in the early 1980s, people using the tools of nonsmooth analysis developed some remarkable nonsmooth extensions of the existing critical point theory. Until now, however, no one had gathered these tools and results together into a unified, systematic survey of these advances. This book fills that gap. It provides a complete presentation of nonsmooth critical point theory, then goes beyond it to study nonlinear second order boundary value problems. The authors do not limit their treatment to problems in variational form. They also examine in detail equations driven by the p-Laplacian, its generalizations, and their spectral properties, studying a wide variety of problems and illustrating the powerful tools of modern nonlinear analysis. The presentation includes many recent results, including some that were previously unpublished. Detailed appendices outline the fundamental mathematical tools used in the book, and a rich bibliography forms a guide to the relevant literature. Most books addressing critical point theory deal only with smooth problems, linear or semilinear problems, or consider only variational methods or the tools of nonlinear operators. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems offers a comprehensive treatment of the subject that is up-to-date, self-contained, and rich in methods for a wide variety of problems.

## Nonlinear Analysis

Author: Leszek Gasinski
Publisher: CRC Press
ISBN: 9781584884842
Format: PDF, ePub, Mobi

Nonlinear analysis is a broad, interdisciplinary field characterized by a remarkable mixture of analysis, topology, and applications. Its concepts and techniques provide the tools for developing more realistic and accurate models for a variety of phenomena encountered in fields ranging from engineering and chemistry to economics and biology. This volume focuses on topics in nonlinear analysis pertinent to the theory of boundary value problems and their application in areas such as control theory and the calculus of variations. It complements the many other books on nonlinear analysis by addressing topics previously discussed fully only in scattered research papers. These include recent results on critical point theory, nonlinear differential operators, and related regularity and comparison principles. The rich variety of topics, both theoretical and applied, make Nonlinear Analysis useful to anyone, whether graduate student or researcher, working in analysis or its applications in optimal control, theoretical mechanics, or dynamical systems. An appendix contains all of the background material needed, and a detailed bibliography forms a guide for further study.

## New Technical Books

Author:
Publisher:
ISBN:
Format: PDF, ePub, Mobi

## Books in print an author title series index BIP 1993 94 9 1993 1994 9 O P O S I Titles

Author: R R Bowker Publishing
Publisher: R. R. Bowker
ISBN: 9780835233637
Format: PDF

## Government Reports Announcements Index

Author:
Publisher:
ISBN:
Format: PDF, Kindle

## Government Reports Announcements

Author:
Publisher:
ISBN:
Format: PDF, Docs

## Nonlinear Phenomena in Mathematical Sciences

Author: V. Lakshmikantham
Publisher: Elsevier
ISBN: 1483272052
Format: PDF

Nonlinear Phenomena in Mathematical Sciences contains the proceedings of an International Conference on Nonlinear Phenomena in Mathematical Sciences, held at the University of Texas at Arlington, on June 16-20,1980. The papers explore trends in nonlinear phenomena in mathematical sciences, with emphasis on nonlinear functional analytic methods and their applications; nonlinear wave theory; and applications to medical and life sciences. In the area of nonlinear functional analytic methods and their applications, the following subjects are discussed: optimal control theory; periodic oscillations of nonlinear mechanical systems; Leray-Schauder degree theory; differential inequalities applied to parabolic and elliptic partial differential equations; bifurcation theory, stability theory in analytical mechanics; singular and ordinary boundary value problems, etc. The following topics in nonlinear wave theory are considered: nonlinear wave propagation in a randomly homogeneous media; periodic solutions of a semilinear wave equation; asymptotic behavior of solutions of strongly damped nonlinear wave equations; shock waves and dissipation theoretical methods for a nonlinear Schr?dinger equation; and nonlinear hyperbolic Volterra equations occurring in viscoelasticity. Applications to medical and life sciences include mathematical modeling in physiology, pharmacokinetics, and neuro-mathematics, along with epidemic modeling and parameter estimation techniques. This book will be helpful to students, practitioners, and researchers in the field of mathematics.