Nuclear Magnetic Resonance

Author: Krystyna Kamienska-Trela
Publisher: Royal Society of Chemistry
ISBN: 1849733732
Format: PDF, ePub, Mobi
Download Now
Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive coverage of the literature on this topic.

Nuclear Magnetic Resonance in Agriculture

Author: Philip E. Pfeffer
Publisher: CRC Press
ISBN: 9780849368646
Format: PDF
Download Now
This informative publication presents the broad application of nuclear magnetic resonance to many of today's problem areas in agriculture. Solid-state NMR methodology is covered, with its applications to the study of intact agricultural matrices such as plant cell walls, photosynthetic chloroplast membranes, forages, wood cellulose, and soils. In vivo solution NMR methodology and its applications to the study of different functioning plant tissues and their biochemical responses to various pathological, physiological, and toxicological stresses are illustrated with examples using 31P, 13C, 23Na, and 15N resonance methods. An introductory chapter presents a review of the in vivo literature and some basic principles and requirements for carrying out such experiments. A special section focuses on state-of-the-art 13C and 1H high-resolution multidimensional methods and their application to the study of agricultural toxins; biologically active components, including their structures and biosyntheses, and dynamic measurements of relaxation phenomena associated with cross relaxation in water bound to food proteins.

Principles of Nuclear Magnetic Resonance Microscopy

Author: Paul T. Callaghan
Publisher: Oxford University Press on Demand
ISBN: 9780198539971
Format: PDF, ePub, Docs
Download Now
This book details the underlying principles behind the use of magnetic field gradients to image molecular distribution and molecular motion, providing many examples by way of illustration.

Nuclear Magnetic Resonance Spectroscopy

Author: Frank A. Bovey
Publisher: Elsevier
ISBN: 0080916996
Format: PDF, Kindle
Download Now
Nuclear Magnetic Resonance Spectroscopy, Second Edition focuses on two-dimensional nuclear magnetic resonance (NMR) spectroscopy, high resolution NMR of solids, water suppression, multiple quantum spectroscopy, and NMR imaging. The selection first takes a look at the fundamental principles and experimental methods. Discussions focus on the NMR phenomenon, dipolar broadening and spin-spin relaxation, nuclear electric quadrupole relaxation, saturation, magnetic shielding and chemical shift, magnetic field, transitions between the nuclear energy levels, and resolution and sensitivity considerations. The manuscript then ponders on chemical shift, coupling of nuclear spins, and nuclear relaxation and chemical rate processes. Topics include spin lattice relaxation, spin-spin relaxation, spin decoupling and associated techniques, and description and analysis of spin systems. The text examines two-dimensional NMR spectroscopy, macromolecules, and NMR of solids, including magic angle spinning, cross polarization, proton dipolar broadening, biopolymers, and chain motion in macromolecules. The selection is a valuable source of data for readers interested in nuclear magnetic resonance spectroscopy.

Nuclear Magnetic Resonance Spectroscopy

Author: Joseph B. Lambert
Publisher: Wiley
ISBN: 1119295238
Format: PDF, ePub, Docs
Download Now
Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation. Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multiā€pulse and multi-dimensional methods Contains experimental procedures and practical advice relative to the execution of NMR experiments Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists, Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.

Nuclear Magnetic Resonance

Author: P. J. Hore
Publisher: Oxford University Press, USA
ISBN: 0198703414
Format: PDF, Mobi
Download Now
The renowned Oxford Chemistry Primers series, which provides focused introductions to a range of important topics in chemistry, has been refreshed and updated to suit the needs of today's students, lecturers, and postgraduate researchers. The rigorous, yet accessible, treatment of each subject area is ideal for those wanting a primer in a given topic to prepare them for more advanced study or research. Moreover, cutting-edge examples and applications throughout the texts show the relevance of the chemistry being described to current research and industry. The learning features provided, including questions at the end of every chapter and online multiple-choice questions, encourage active learning and promote understanding. Furthermore, frequent diagrams, margin notes, and glossary definitions all help to enhance a student's understanding of these essential areas of chemistry. Nuclear Magnetic Resonance offers a concise and accessible introduction to the physical principles of liquid-state NMR, a powerful technique for probing molecular structures. Examples, applications, and exercises are provided throughout to enable beginning undergraduates to get to grips with this important analytical technique. Online Resource Centre The Online Resource Centre to accompany Nuclear Magnetic Resonance features: For registered adopters of the text: * Figures from the book available to download For students: * Multiple-choice questions for self-directed learning * Full worked solutions to the end-of-chapter exercises

Nuclear Magnetic Resonance and Relaxation

Author: Brian Cowan
Publisher: Cambridge University Press
ISBN: 9780521018111
Format: PDF, ePub, Mobi
Download Now
This book provides an introduction to the general principles of nuclear magnetic resonance and relaxation, concentrating on simple models and their application. The concepts of relaxation and the time domain are particularly emphasised. Some relatively advanced topics are treated, but the approach is graduated and all points of potential difficulty are carefully explained. An introductory classical discussion of relaxation is followed by a quantum-mechanical treatment. Only when the the principles of relaxation are firmly established is the density operator approach introduced; and then its power becomes apparent. A selection of case studies is considered in depth, providing applications of the ideas developed in the text. There are a number of appendices, including one on random functions. This treatment of one of the most important experimental techniques in modern science will be of great value to final-year undergraduates, graduate students and researchers using nuclear magnetic resonance, particularly physicists, and especially those involved in the study of condensed matter physics.

Nuclear Magnetic Resonance Spectroscopy

Author: John Henry Nelson
Publisher: Pearson College Division
ISBN: 9780130334510
Format: PDF
Download Now
This is the only how-to volume that investigates the spectroscopy of a variety of nuclides other than H and C in depth. It contains extensive reference material and numerous problems, most of which include real spectra. It is written to provide users with the knowledge necessary to choose the most appropriate experiment to obtain the best quality spectra with the ability to fully interpret the data. The book covers basic theory of NMR spectroscopy, spectrum measurement, the chemical shift and examples for selected nuclei, symmetry and NMR spectroscopy, spin-spin coupling and NMR spin systems, typical magnitude of selected coupling constants, nuclear spin relaxation, the nuclear overhauser effect, editing C NMR spectra, two-dimensional NMR spectroscopy, dynamic NMR spectroscopy, lanthanide shift reagents (LSR), NMR of solids. For NMR spectroscopists and analytical chemists.