Numerical analytic Methods in the Theory of Boundary value Problems

Author: Nikola? Iosifovich Ronto
Publisher: World Scientific
ISBN: 9789810236762
Format: PDF
Download Now
This book contains the main results of the authors' investigations on the development and application of numerical-analytic methods for ordinary nonlinear boundary value problems (BVPs). The methods under consideration provide an opportunity to solve the two important problems of the BVP theory ? namely, to establish existence theorems and to build approximation solutions. They can be used to investigate a wide variety of BVPs.The Appendix, written in collaboration with S I Trofimchuk, discusses the connection of the new method with the classical Cesari, Cesari-Hale and Lyapunov-Schmidt methods.

Analytical Solution Methods for Boundary Value Problems

Author: A.S. Yakimov
Publisher: Academic Press
ISBN: 0128043636
Format: PDF, Docs
Download Now
Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems. Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods. Discusses the theory and analytical methods for many differential equations appropriate for applied and computational mechanics researchers Addresses pertinent boundary problems in mathematical physics achieved without using the theory of series Includes results that can be used to address nonlinear equations in heat conductivity for the solution of conjugate heat transfer problems and the equations of telegraph and nonlinear transport equation Covers select method solutions for applied mathematicians interested in transport equations methods and thermal protection studies Features extensive revisions from the Russian original, with 115+ new pages of new textual content

Handbook of Differential Equations Ordinary Differential Equations

Author: Flaviano Battelli
Publisher: Elsevier
ISBN: 9780080559469
Format: PDF, Docs
Download Now
This handbook is the fourth volume in a series of volumes devoted to self-contained and up-to-date surveys in the theory of ordinary differential equations, with an additional effort to achieve readability for mathematicians and scientists from other related fields so that the chapters have been made accessible to a wider audience. * Covers a variety of problems in ordinary differential equations * Pure mathematical and real-world applications * Written for mathematicians and scientists of many related fields

Exact and Truncated Difference Schemes for Boundary Value ODEs

Author: Ivan Gavrilyuk
Publisher: Springer Science & Business Media
ISBN: 3034801076
Format: PDF, ePub, Mobi
Download Now
The book provides a comprehensive introduction to compact finite difference methods for solving boundary value ODEs with high accuracy. The corresponding theory is based on exact difference schemes (EDS) from which the implementable truncated difference schemes (TDS) are derived. The TDS are now competitive in terms of efficiency and accuracy with the well-studied numerical algorithms for the solution of initial value ODEs. Moreover, various a posteriori error estimators are presented which can be used in adaptive algorithms as important building blocks. The new class of EDS and TDS treated in this book can be considered as further developments of the results presented in the highly respected books of the Russian mathematician A. A. Samarskii. It is shown that the new Samarskii-like techniques open the horizon for the numerical treatment of more complicated problems. The book contains exercises and the corresponding solutions enabling the use as a course text or for self-study. Researchers and students from numerical methods, engineering and other sciences will find this book provides an accessible and self-contained introduction to numerical methods for solving boundary value ODEs.

Functional Analytic Methods for Partial Differential Equations

Author: Hiroki Tanabe
Publisher: CRC Press
ISBN: 9780824797744
Format: PDF, Mobi
Download Now
Combining both classical and current methods of analysis, this text present discussions on the application of functional analytic methods in partial differential equations. It furnishes a simplified, self-contained proof of Agmon-Douglis-Niremberg's Lp-estimates for boundary value problems, using the theory of singular integrals and the Hilbert transform.

Analytical and Numerical Methods for Convection dominated and Singularly Perturbed Problems

Author: Lubin Vulkov
Publisher: Nova Publishers
ISBN: 9781560728481
Format: PDF, Docs
Download Now
The proceedings of the Workshop on Analytical and Computational Methods for Convention-Dominated and Singularly Peturbed Problems, Lozenetz, Bulgaria, 27-31 August, 1998. The volume includes 13 lectures and 19 papers presented at the workshop, providing an overview of developments in the theory and applications of advanced numerical methods to problems having boundary and interior layers.

High Precision Methods in Eigenvalue Problems and Their Applications

Author: Leonid D. Akulenko
Publisher: CRC Press
ISBN: 113439022X
Format: PDF, Docs
Download Now
This book presents a survey of analytical, asymptotic, numerical, and combined methods of solving eigenvalue problems. It considers the new method of accelerated convergence for solving problems of the Sturm-Liouville type as well as boundary-value problems with boundary conditions of the first, second, and third kind. The authors also present high-precision asymptotic methods for determining eigenvalues and eigenfunctions of higher oscillation modes and consider numerous eigenvalue problems that appear in oscillation theory, acoustics, elasticity, hydrodynamics, geophysics, quantum mechanics, structural mechanics, electrodynamics, and microelectronics.

Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions

Author: v Mityushev
Publisher: CRC Press
ISBN: 9781584880578
Format: PDF, Docs
Download Now
Constructive methods developed in the framework of analytic functions effectively extend the use of mathematical constructions, both within different branches of mathematics and to other disciplines. This monograph presents some constructive methods-based primarily on original techniques-for boundary value problems, both linear and nonlinear. From among the many applications to which these methods can apply, the authors focus on interesting problems associated with composite materials with a finite number of inclusions. How far can one go in the solutions of problems in nonlinear mechanics and physics using the ideas of analytic functions? What is the difference between linear and nonlinear cases from the qualitative point of view? What kinds of additional techniques should one use in investigating nonlinear problems? Constructive Methods for Linear and Nonlinear Boundary Value Problems serves to answer these questions, and presents many results to Westerners for the first time. Among the most interesting of these is the complete solution of the Riemann-Hilbert problem for multiply connected domains. The results offered in Constructive Methods for Linear and Nonlinear Boundary Value Problems are prepared for direct application. A historical survey along with background material, and an in-depth presentation of practical methods make this a self-contained volume useful to experts in analytic function theory, to non-specialists, and even to non-mathematicians who can apply the methods to their research in mechanics and physics.

Mathematical Theory of Elasticity of Quasicrystals and Its Applications

Author: Tian-You Fan
Publisher: Springer Science & Business Media
ISBN: 3642146430
Format: PDF, ePub
Download Now
This inter-disciplinary work covering the continuum mechanics of novel materials, condensed matter physics and partial differential equations discusses the mathematical theory of elasticity of quasicrystals (a new condensed matter) and its applications by setting up new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions. The new theories developed here dramatically simplify the solving of complicated elasticity equation systems. Large numbers of complicated equations involving elasticity are reduced to a single or a few partial differential equations of higher order. Systematical and direct methods of mathematical physics and complex variable functions are developed to solve the equations under appropriate boundary value and initial value conditions, and many exact analytical solutions are constructed. The dynamic and non-linear analysis of deformation and fracture of quasicrystals in this volume presents an innovative approach. It gives a clear-cut, strict and systematic mathematical overview of the field. Comprehensive and detailed mathematical derivations guide readers through the work. By combining mathematical calculations and experimental data, theoretical analysis and practical applications, and analytical and numerical studies, readers will gain systematic, comprehensive and in-depth knowledge on continuum mechanics, condensed matter physics and applied mathematics.