## Numerical and Analytical Methods with MATLAB for Electrical Engineers

Author: William Bober
Publisher: CRC Press
ISBN: 1466576073
Format: PDF, ePub

Combining academic and practical approaches to this important topic, Numerical and Analytical Methods with MATLAB® for Electrical Engineers is the ideal resource for electrical and computer engineering students. Based on a previous edition that was geared toward mechanical engineering students, this book expands many of the concepts presented in that book and replaces the original projects with new ones intended specifically for electrical engineering students. This book includes: An introduction to the MATLAB programming environment Mathematical techniques for matrix algebra, root finding, integration, and differential equations More advanced topics, including transform methods, signal processing, curve fitting, and optimization An introduction to the MATLAB graphical design environment, Simulink Exploring the numerical methods that electrical engineers use for design analysis and testing, this book comprises standalone chapters outlining a course that also introduces students to computational methods and programming skills, using MATLAB as the programming environment. Helping engineering students to develop a feel for structural programming—not just button-pushing with a software program—the illustrative examples and extensive assignments in this resource enable them to develop the necessary skills and then apply them to practical electrical engineering problems and cases.

## Numerical and Analytical Methods with MATLAB

Author: William Bober
Publisher: CRC Press
ISBN: 1420093576
Format: PDF, Mobi

Numerical and Analytical Methods with MATLAB® presents extensive coverage of the MATLAB programming language for engineers. It demonstrates how the built-in functions of MATLAB can be used to solve systems of linear equations, ODEs, roots of transcendental equations, statistical problems, optimization problems, control systems problems, and stress analysis problems. These built-in functions are essentially black boxes to students. By combining MATLAB with basic numerical and analytical techniques, the mystery of what these black boxes might contain is somewhat alleviated. This classroom-tested text first reviews the essentials involved in writing computer programs as well as fundamental aspects of MATLAB. It next explains how matrices can solve problems of linear equations, how to obtain the roots of algebraic and transcendental equations, how to evaluate integrals, and how to solve various ODEs. After exploring the features of Simulink, the book discusses curve fitting, optimization problems, and PDE problems, such as the vibrating string, unsteady heat conduction, and sound waves. The focus then shifts to the solution of engineering problems via iteration procedures, differential equations via Laplace transforms, and stress analysis problems via the finite element method. The final chapter examines control systems theory, including the design of single-input single-output (SISO) systems. Two Courses in One Textbook The first six chapters are appropriate for a lower level course at the sophomore level. The remaining chapters are ideal for a course at the senior undergraduate or first-year graduate level. Most of the chapters contain projects that require students to write a computer program in MATLAB that produces tables, graphs, or both. Many sample MATLAB programs (scripts) in the text provide guidance on completing these projects.

## Stresses in Beams Plates and Shells Third Edition

Author: Ansel C. Ugural
Publisher: CRC Press
ISBN: 1439882525
Format: PDF

Noted for its practical, student-friendly approach to graduate-level mechanics, this volume is considered one of the top references—for students or professioals—on the subject of elasticity and stress in construction. The author presents many examples and applications to review and support several foundational concepts. The more advanced concepts in elasticity and stress are analyzed and introduced gradually, accompanied by even more examples and engineering applications in addition to numerous illustrations.Chapter problems are carefully arranged from the basic to the more challenging. The author covers computer methods, including FEA and computational/equation-solving software, and, in many cases, classical and numerical/computer approaches.

## Numerical Analysis with Applications in Mechanics and Engineering

Author: Petre Teodorescu
Publisher: John Wiley & Sons
ISBN: 1118614623
Format: PDF

A much-needed guide on how to use numerical methods to solvepractical engineering problems Bridging the gap between mathematics and engineering,Numerical Analysis with Applications in Mechanics andEngineering arms readers with powerful tools for solvingreal-world problems in mechanics, physics, and civil and mechanicalengineering. Unlike most books on numerical analysis, thisoutstanding work links theory and application, explains themathematics in simple engineering terms, and clearly demonstrateshow to use numerical methods to obtain solutions and interpretresults. Each chapter is devoted to a unique analytical methodology,including a detailed theoretical presentation and emphasis onpractical computation. Ample numerical examples and applicationsround out the discussion, illustrating how to work out specificproblems of mechanics, physics, or engineering. Readers will learnthe core purpose of each technique, develop hands-onproblem-solving skills, and get a complete picture of the studiedphenomenon. Coverage includes: How to deal with errors in numerical analysis Approaches for solving problems in linear and nonlinearsystems Methods of interpolation and approximation of functions Formulas and calculations for numerical differentiation andintegration Integration of ordinary and partial differential equations Optimization methods and solutions for programmingproblems Numerical Analysis with Applications in Mechanics andEngineering is a one-of-a-kind guide for engineers usingmathematical models and methods, as well as for physicists andmathematicians interested in engineering problems.

## Computational Mechanics of Composite Materials

Author: Marcin Marek Kaminski
Publisher: Springer Science & Business Media
ISBN: 1846280494
Format: PDF, Docs

Computational Mechanics of Composite Materials lays stress on the advantages of combining theoretical advancements in applied mathematics and mechanics with the probabilistic approach to experimental data in meeting the practical needs of engineers. Features: Programs for the probabilistic homogenisation of composite structures with finite numbers of components allow composites to be treated as homogeneous materials with simpler behaviours. Treatment of defects in the interfaces within heterogeneous materials and those arising in composite objects as a whole by stochastic modelling. New models for the reliability of composite structures. Novel numerical algorithms for effective Monte-Carlo simulation. Computational Mechanics of Composite Materials will be of interest to academic and practising civil, mechanical, electronic and aerospatial engineers, to materials scientists and to applied mathematicians requiring accurate and usable models of the behaviour of composite materials.

## Methods of Applied Mathematics with a MATLAB Overview

Author: Jon H. Davis
Publisher: Springer Science & Business Media
ISBN: 9780817643317
Format: PDF, Docs

This text is broadly organized around the theme of applications of Fourier analysis. The treatment covers both classical applications in partial differential equations and boundary value problems and a number of topics associated with Laplace, Fourier and discrete transformation theories.

## Angewandte Mathematik Body and Soul

Author: Kenneth Eriksson
Publisher: Springer-Verlag
ISBN: 3540350063
Format: PDF

Der 3-bändige Grundkurs für Studienanfänger verbindet die mathematische Analysis (Soul) mit numerischer Berechnung (Body) und einer Fülle von Anwendungen. Die Autoren haben die Inhalte im Unterricht erprobt. Band 1 behandelt die Grundlagen der Analysis.

## Advanced mathematics and mechanics applications using MATLAB

Author: H. B. Wilson
Publisher: Surendra Kumar
ISBN: 9780849316869
Format: PDF, Mobi

The Second Edition of this bestselling book by Drs. Wilson and Turcotte uses MATLAB to analyze various applications in mathematics and mechanics. This modern programming environment is an excellent alternative to FORTRAN. It is an interactive environment for technical computing, and includes a high level programming language and simple graphics commands facilitating two- and three-dimensional data presentation. The applications emphasize solutions of linear and nonlinear differential equations. Linear partial differential equations and linear matrix differential equations are analyzed using eigenfunctions and series solutions. All the programs are contained on an accompanying diskette, which is organized with directories corresponding to different chapters. A group of repeatedly used functions, such as those for spline interpolation and interactive data input, comprises a separate utility library.

## The British National Bibliography

Author: Arthur James Wells
Publisher:
ISBN:
Format: PDF, ePub

## Computational Science and Engineering

Author: Gilbert Strang
Publisher: Wellesley-Cambridge Press
ISBN: 9780961408817
Format: PDF, Kindle

Encompasses the full range of computational science and engineering from modelling to solution, both analytical and numerical. It develops a framework for the equations and numerical methods of applied mathematics. Gilbert Strang has taught this material to thousands of engineers and scientists (and many more on MIT's OpenCourseWare 18.085-6). His experience is seen in his clear explanations, wide range of examples, and teaching method. The book is solution-based and not formula-based: it integrates analysis and algorithms and MATLAB codes to explain each topic as effectively as possible. The topics include applied linear algebra and fast solvers, differential equations with finite differences and finite elements, Fourier analysis and optimization. This book also serves as a reference for the whole community of computational scientists and engineers. Supporting resources, including MATLAB codes, problem solutions and video lectures from Gilbert Strang's 18.085 courses at MIT, are provided at math.mit.edu/cse.