MATLAB Numerical Methods with Chemical Engineering Applications

Author: Kamal Al-Malah
Publisher: McGraw Hill Professional
ISBN: 0071831290
Format: PDF
Download Now
A practical, professional guide to MATLAB computational techniques and engineering applications MATLAB Numerical Methods with Chemical Engineering Applications shows you, step by step, how to use MATLAB® to model and simulate physical problems in the chemical engineering realm. Written for MATLAB 7.11, this hands-on resource contains concise explanations of essential MATLAB commands, as well as easy-to-follow instructions for using the programming features, graphical capabilities, and desktop interface. Every step needed toward the final solution is algorithmically explained via snapshots of the MATLAB platform in parallel with the text. End-of-chapter problems help you practice what you've learned. Master this powerful computational tool using this detailed, self-teaching guide. COVERAGE INCLUDES: MATLAB basics Matrices MATLAB scripting language: M-file Image and image analysis Curve-fitting Numerical integration Solving differential equations A system of algebraic equations Statistics Chemical engineering applications MATLAB Graphical User Interface Design Environment (GUIDE)

Numerical Methods for Chemical Engineers with MATLAB Applications

Author: A. Constantinides
Publisher: Prentice Hall
ISBN: 9780130138514
Format: PDF, ePub, Mobi
Download Now
Master numerical methods using MATLAB, today's leading software for problem solving. This complete guide to numerical methods in chemical engineering is the first to take full advantage of MATLAB's powerful calculation environment. Every chapter contains several examples using general MATLAB functions that implement the method and can also be applied to many other problems in the same category. The authors begin by introducing the solution of nonlinear equations using several standard approaches, including methods of successive substitution and linear interpolation; the Wegstein method, the Newton-Raphson method; the Eigenvalue method; and synthetic division algorithms. With these fundamentals in hand, they move on to simultaneous linear algebraic equations, covering matrix and vector operations; Cramer's rule; Gauss methods; the Jacobi method; and the characteristic-value problem. Additional coverage includes: Finite difference methods, and interpolation of equally and unequally spaced points Numerical differentiation and integration, including differentiation by backward, forward, and central finite differences; Newton-Cotes formulas; and the Gauss Quadrature Two detailed chapters on ordinary and partial differential equations Linear and nonlinear regression analyses, including least squares, estimated vector of parameters, method of steepest descent, Gauss-Newton method, Marquardt Method, Newton Method, and multiple nonlinear regression The numerical methods covered here represent virtually all of those commonly used by practicing chemical engineers. The focus on MATLAB enables readers to accomplish more, with less complexity, than was possible with traditional FORTRAN. For those unfamiliar with MATLAB, a brief introduction is provided as an Appendix. Over 60+ MATLAB examples, methods, and function scripts are covered, and all of them are included on the book's CD

Numerical Methods for Chemical Engineers Using Excel VBA and MATLAB

Author: Victor J. Law
Publisher: CRC Press
ISBN: 1482201593
Format: PDF, ePub, Mobi
Download Now
While teaching the Numerical Methods for Engineers course over the last 15 years, the author found a need for a new textbook, one that was less elementary, provided applications and problems better suited for chemical engineers, and contained instruction in Visual Basic® for Applications (VBA). This led to six years of developing teaching notes that have been enhanced to create the current textbook, Numerical Methods for Chemical Engineers Using Excel®, VBA, and MATLAB®. Focusing on Excel gives the advantage of it being generally available, since it is present on every computer—PC and Mac—that has Microsoft Office installed. The VBA programming environment comes with Excel and greatly enhances the capabilities of Excel spreadsheets. While there is no perfect programming system, teaching this combination offers knowledge in a widely available program that is commonly used (Excel) as well as a popular academic software package (MATLAB). Chapters cover nonlinear equations, Visual Basic, linear algebra, ordinary differential equations, regression analysis, partial differential equations, and mathematical programming methods. Each chapter contains examples that show in detail how a particular numerical method or programming methodology can be implemented in Excel and/or VBA (or MATLAB in chapter 10). Most of the examples and problems presented in the text are related to chemical and biomolecular engineering and cover a broad range of application areas including thermodynamics, fluid flow, heat transfer, mass transfer, reaction kinetics, reactor design, process design, and process control. The chapters feature "Did You Know" boxes, used to remind readers of Excel features. They also contain end-of-chapter exercises, with solutions provided.

Numerical Methods for Engineers

Author: Steven C. Chapra
Publisher:
ISBN: 9789814670876
Format: PDF
Download Now
Numerical Methods for Engineers retains the instructional techniques that have made the text so successful. Chapra and Canale's unique approach opens each part of the text with sections called "Motivation" "Mathematical Background" and "Orientation". Each part closes with an "Epilogue" containing "Trade-Offs" "Important Relationships and Formulas" and "Advanced Methods and Additional References". Much more than a summary the Epilogue deepens understanding of what has been learned and provides a peek into more advanced methods. Numerous new or revised problems are drawn from actual engineering practice. The expanded breadth of engineering disciplines covered is especially evident in these exercises which now cover such areas as biotechnology and biomedical engineering. Excellent new examples and case studies span all areas of engineering giving students a broad exposure to various fields in engineering.McGraw-Hill Education's Connect is also available as an optional add on item. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need when they need it how they need it so that class time is more effective. Connect allows the professor to assign homework quizzes and tests easily and automatically grades and records the scores of the student's work. Problems are randomized to prevent sharing of answers an may also have a "multi-step solution" which helps move the students' learning along if they experience difficulty.

INTRODUCTION TO NUMERICAL METHODS IN CHEMICAL ENGINEERING

Author: PRADEEP AHUJA
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120340183
Format: PDF, ePub, Mobi
Download Now
This book is an exhaustive presentation of the numerical methods used in chemical engineering. Intended primarily as a textbook for BE/BTech students of chemical engineering, the book will also be useful to research and development/process professionals in the fields of chemical, biochemical, mechanical and biomedical engineering. The initial chapters discuss the linear and nonlinear algebraic equations. The ensuing chapters cover the problems in chemical engineering thermodynamics as well as initial value problems, boundary value problems and convection–diffusion problems. Topics related to chemical reaction, dispersion and diffusion as well as steady and transient heat conduction are treated in the final chapters. The book covers a large number of numerical methods including tridiagonal matrix algorithm (TDMA) method, Newton’s method, Runge–Kutta fourth-order method, Upwind Difference Scheme (UDS) method and Alternating Direction Implicit (ADI) method. Strong emphasis is given on applications and uses of numerical analysis specifically required at the undergraduate level. The book contains numerous worked-out examples and chapter-end exercises. The answers to all chapter-end exercises are provided. The Appendix contains a total of 33 programs in C++ related to the various numerical methods explained in the book.

Partielle Differentialgleichungen und numerische Methoden

Author: Stig Larsson
Publisher: Springer-Verlag
ISBN: 3540274227
Format: PDF, Mobi
Download Now
Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

Numerical Methods for Chemical Engineering

Author: Keith Stoner
Publisher: Createspace Independent Publishing Platform
ISBN: 9781979724715
Format: PDF
Download Now
This book will provide the graduate student with essential tools required by industry and research alike. Supplementary material includes solutions to homework problems set in the text, MATLAB programs and tutorial, lecture slides, and complicated derivations for the more advanced reader. Suitable for a first year graduate course, this textbook unites the applications of numerical mathematics and scientific computing to the practice of chemical engineering. Written in a pedagogic style, the book describes basic linear and nonlinear algebric systems all the way through to stochastic methods, Bayesian statistics and parameter estimation. These subjects are developed at a level of mathematics suitable for graduate engineering study without the exhaustive level of the theoretical mathematical detail. The implementation of numerical methods in MATLAB is integrated within each chapter and numerous examples in chemical engineering are provided, with a library of corresponding MATLAB programs.