Numerical Methods for Fluid Dynamics

Author: Dale R. Durran
Publisher: Springer Science & Business Media
ISBN: 9781441964120
Format: PDF, Kindle
Download Now
This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean

Numerical Methods for Wave Equations in Geophysical Fluid Dynamics

Author: Dale R. Durran
Publisher: Springer Science & Business Media
ISBN: 1475730810
Format: PDF, Mobi
Download Now
Covering a wide range of techniques, this book describes methods for the solution of partial differential equations which govern wave propagation and are used in modeling atmospheric and oceanic flows. The presentation establishes a concrete link between theory and practice.

Hydrobiological Modelling

Author: Brian J. Williams
Publisher: Lulu.com
ISBN: 1847289606
Format: PDF, Mobi
Download Now
The book describes models of aquatic ecosystems, ranging from lakes to estuaries to the deep ocean. It provides a background in the physical and biological processes, numerical methods and elementary ecosystem models. It describes two of the most widely used hydrodynamic models and presents a number of case studies. The practice of modelling in management is discussed.

A Mathematical Introduction to Fluid Mechanics

Author: Alexandre J. Chorin
Publisher: Springer Science & Business Media
ISBN: 1461208831
Format: PDF, ePub, Mobi
Download Now
A presentation of some of the basic ideas of fluid mechanics in a mathematically attractive manner. The text illustrates the physical background and motivation for some constructions used in recent mathematical and numerical work on the Navier- Stokes equations and on hyperbolic systems, so as to interest students in this at once beautiful and difficult subject. This third edition incorporates a number of updates and revisions, while retaining the spirit and scope of the original book.

Einf hrung in die Mechanik und Symmetrie

Author: Jerrold E. Marsden
Publisher: Springer-Verlag
ISBN: 3642568599
Format: PDF, Kindle
Download Now
Symmetrie spielt in der Mechanik eine große Rolle. Dieses Buch beschreibt die Entwicklung zugrunde liegender Theorien. Besonderes Gewicht wird der Symmetrie beigemessen. Ursache hierfür sind Entwicklungen im Bereich dynamischer Systeme, der Einsatz geometrischer Verfahren und neue Anwendungen. Dieses Lehrbuch stellt Grundlagen bereit und beschreibt zahlreiche spezifische Anwendungen. Interessant für Physiker und Ingenieure. Ausgewählte Beispiele, Anwendungen, aktuelle Verfahren/Techniken veranschaulichen die Theorie.

The Finite Element Method in Heat Transfer and Fluid Dynamics Third Edition

Author: J. N. Reddy
Publisher: CRC Press
ISBN: 1420085980
Format: PDF
Download Now
As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition illustrates what a user must know to ensure the optimal application of computational procedures—particularly the Finite Element Method (FEM)—to important problems associated with heat conduction, incompressible viscous flows, and convection heat transfer. This book follows the tradition of the bestselling previous editions, noted for their concise explanation and powerful presentation of useful methodology tailored for use in simulating CFD and CHT. The authors update research developments while retaining the previous editions’ key material and popular style in regard to text organization, equation numbering, references, and symbols. This updated third edition features new or extended coverage of: Coupled problems and parallel processing Mathematical preliminaries and low-speed compressible flows Mode superposition methods and a more detailed account of radiation solution methods Variational multi-scale methods (VMM) and least-squares finite element models (LSFEM) Application of the finite element method to non-isothermal flows Formulation of low-speed, compressible flows With its presentation of realistic, applied examples of FEM in thermal and fluid design analysis, this proven masterwork is an invaluable tool for mastering basic methodology, competently using existing simulation software, and developing simpler special-purpose computer codes. It remains one of the very best resources for understanding numerical methods used in the study of fluid mechanics and heat transfer phenomena.