Numerical Methods in Finance and Economics

Author: Paolo Brandimarte
Publisher: John Wiley & Sons
ISBN: 1118625579
Format: PDF, Mobi
Download Now
A state-of-the-art introduction to the powerful mathematical and statistical tools used in the field of finance The use of mathematical models and numerical techniques is a practice employed by a growing number of applied mathematicians working on applications in finance. Reflecting this development, Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition bridges the gap between financial theory and computational practice while showing readers how to utilize MATLAB?--the powerful numerical computing environment--for financial applications. The author provides an essential foundation in finance and numerical analysis in addition to background material for students from both engineering and economics perspectives. A wide range of topics is covered, including standard numerical analysis methods, Monte Carlo methods to simulate systems affected by significant uncertainty, and optimization methods to find an optimal set of decisions. Among this book's most outstanding features is the integration of MATLAB?, which helps students and practitioners solve relevant problems in finance, such as portfolio management and derivatives pricing. This tutorial is useful in connecting theory with practice in the application of classical numerical methods and advanced methods, while illustrating underlying algorithmic concepts in concrete terms. Newly featured in the Second Edition: * In-depth treatment of Monte Carlo methods with due attention paid to variance reduction strategies * New appendix on AMPL in order to better illustrate the optimization models in Chapters 11 and 12 * New chapter on binomial and trinomial lattices * Additional treatment of partial differential equations with two space dimensions * Expanded treatment within the chapter on financial theory to provide a more thorough background for engineers not familiar with finance * New coverage of advanced optimization methods and applications later in the text Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition presents basic treatments and more specialized literature, and it also uses algebraic languages, such as AMPL, to connect the pencil-and-paper statement of an optimization model with its solution by a software library. Offering computational practice in both financial engineering and economics fields, this book equips practitioners with the necessary techniques to measure and manage risk.

Financial Modelling

Author: Joerg Kienitz
Publisher: John Wiley & Sons
ISBN: 1118413296
Format: PDF
Download Now
Financial Modelling - Theory, Implementation and Practice is a unique combination of quantitative techniques, the application to financial problems and programming using Matlab. The book enables the reader to model, design and implement a wide range of financial models for derivatives pricing and asset allocation, providing practitioners with complete financial modelling workflow, from model choice, deriving prices and Greeks using (semi-) analytic and simulation techniques, and calibration even for exotic options. The book is split into three parts. The first part considers financial markets in general and looks at the complex models needed to handle observed structures, reviewing models based on diffusions including stochastic-local volatility models and (pure) jump processes. It shows the possible risk neutral densities, implied volatility surfaces, option pricing and typical paths for a variety of models including SABR, Heston, Bates, Bates-Hull-White, Displaced-Heston, or stochastic volatility versions of Variance Gamma, respectively Normal Inverse Gaussian models and finally, multi-dimensional models. The stochastic-local-volatility Libor market model with time-dependent parameters is considered and as an application how to price and risk-manage CMS spread products is demonstrated. The second part of the book deals with numerical methods which enables the reader to use the models of the first part for pricing and risk management, covering methods based on direct integration and Fourier transforms, and detailing the implementation of the COS, CONV, Carr-Madan method or Fourier-Space-Time Stepping. This is applied to pricing of European, Bermudan and exotic options as well as the calculation of the Greeks. The Monte Carlo simulation technique is outlined and bridge sampling is discussed in a Gaussian setting and for Lévy processes. Computation of Greeks is covered using likelihood ratio methods and adjoint techniques. A chapter on state-of-the-art optimization algorithms rounds up the toolkit for applying advanced mathematical models to financial problems and the last chapter in this section of the book also serves as an introduction to model risk. The third part is devoted to the usage of Matlab, introducing the software package by describing the basic functions applied for financial engineering. The programming is approached from an object-oriented perspective with examples to propose a framework for calibration, hedging and the adjoint method for calculating Greeks in a Libor Market model. Source code used for producing the results and analysing the models is provided on the author’s dedicated website, http://www.mathworks.de/matlabcentral/fileexchange/authors/246981

Numerical Methods in Finance

Author: Paolo Brandimarte
Publisher: John Wiley & Sons
ISBN: 0471461695
Format: PDF, ePub, Mobi
Download Now
Balanced coverage of the methodology and theory of numerical methods in finance Numerical Methods in Finance bridges the gap between financial theory and computational practice while helping students and practitioners exploit MATLAB for financial applications. Paolo Brandimarte covers the basics of finance and numerical analysis and provides background material that suits the needs of students from both financial engineering and economics perspectives. Classical numerical analysis methods; optimization, including less familiar topics such as stochastic and integer programming; simulation, including low discrepancy sequences; and partial differential equations are covered in detail. Extensive illustrative examples of the application of all of these methodologies are also provided. The text is primarily focused on MATLAB-based application, but also includes descriptions of other readily available toolboxes that are relevant to finance. Helpful appendices on the basics of MATLAB and probability theory round out this balanced coverage. Accessible for students-yet still a useful reference for practitioners-Numerical Methods in Finance offers an expert introduction to powerful tools in finance.

Numerical Methods and Optimization in Finance

Author: Manfred Gilli
Publisher: Academic Press
ISBN: 0123756634
Format: PDF, ePub
Download Now
This book describes computational finance tools. It covers fundamental numerical analysis and computational techniques, such as option pricing, and gives special attention to simulation and optimization. Many chapters are organized as case studies around portfolio insurance and risk estimation problems. In particular, several chapters explain optimization heuristics and how to use them for portfolio selection and in calibration of estimation and option pricing models. Such practical examples allow readers to learn the steps for solving specific problems and apply these steps to others. At the same time, the applications are relevant enough to make the book a useful reference. Matlab and R sample code is provided in the text and can be downloaded from the book's website. Shows ways to build and implement tools that help test ideas Focuses on the application of heuristics; standard methods receive limited attention Presents as separate chapters problems from portfolio optimization, estimation of econometric models, and calibration of option pricing models

Stochastic Simulation and Applications in Finance with MATLAB Programs

Author: Huu Tue Huynh
Publisher: John Wiley & Sons
ISBN: 0470722134
Format: PDF, Mobi
Download Now
Stochastic Simulation and Applications in Finance with MATLAB Programs explains the fundamentals of Monte Carlo simulation techniques, their use in the numerical resolution of stochastic differential equations and their current applications in finance. Building on an integrated approach, it provides a pedagogical treatment of the need-to-know materials in risk management and financial engineering. The book takes readers through the basic concepts, covering the most recent research and problems in the area, including: the quadratic re-sampling technique, the Least Squared Method, the dynamic programming and Stratified State Aggregation technique to price American options, the extreme value simulation technique to price exotic options and the retrieval of volatility method to estimate Greeks. The authors also present modern term structure of interest rate models and pricing swaptions with the BGM market model, and give a full explanation of corporate securities valuation and credit risk based on the structural approach of Merton. Case studies on financial guarantees illustrate how to implement the simulation techniques in pricing and hedging. NOTE TO READER: The CD has been converted to URL. Go to the following website www.wiley.com/go/huyhnstochastic which provides MATLAB programs for the practical examples and case studies, which will give the reader confidence in using and adapting specific ways to solve problems involving stochastic processes in finance.

An Introduction to Financial Option Valuation

Author: Desmond Higham
Publisher: Cambridge University Press
ISBN: 1139457896
Format: PDF, ePub, Mobi
Download Now
This is a lively textbook providing a solid introduction to financial option valuation for undergraduate students armed with a working knowledge of a first year calculus. Written in a series of short chapters, its self-contained treatment gives equal weight to applied mathematics, stochastics and computational algorithms. No prior background in probability, statistics or numerical analysis is required. Detailed derivations of both the basic asset price model and the Black–Scholes equation are provided along with a presentation of appropriate computational techniques including binomial, finite differences and in particular, variance reduction techniques for the Monte Carlo method. Each chapter comes complete with accompanying stand-alone MATLAB code listing to illustrate a key idea. Furthermore, the author has made heavy use of figures and examples, and has included computations based on real stock market data.

Implementing Models in Quantitative Finance Methods and Cases

Author: Gianluca Fusai
Publisher: Springer Science & Business Media
ISBN: 9783540499596
Format: PDF, Docs
Download Now
This book puts numerical methods in action for the purpose of solving practical problems in quantitative finance. The first part develops a toolkit in numerical methods for finance. The second part proposes twenty self-contained cases covering model simulation, asset pricing and hedging, risk management, statistical estimation and model calibration. Each case develops a detailed solution to a concrete problem arising in applied financial management and guides the user towards a computer implementation. The appendices contain "crash courses" in VBA and Matlab programming languages.

Financial Risk Forecasting

Author: Jon Danielsson
Publisher: Wiley
ISBN: 9780470669433
Format: PDF, Mobi
Download Now
Financial Risk Forecasting is a complete introduction to practical quantitative risk management, with a focus on market risk. Derived from the authors teaching notes and years spent training practitioners in risk management techniques, it brings together the three key disciplines of finance, statistics and modeling (programming), to provide a thorough grounding in risk management techniques. Written by renowned risk expert Jon Danielsson, the book begins with an introduction to financial markets and market prices, volatility clusters, fat tails and nonlinear dependence. It then goes on to present volatility forecasting with both univatiate and multivatiate methods, discussing the various methods used by industry, with a special focus on the GARCH family of models. The evaluation of the quality of forecasts is discussed in detail. Next, the main concepts in risk and models to forecast risk are discussed, especially volatility, value-at-risk and expected shortfall. The focus is both on risk in basic assets such as stocks and foreign exchange, but also calculations of risk in bonds and options, with analytical methods such as delta-normal VaR and duration-normal VaR and Monte Carlo simulation. The book then moves on to the evaluation of risk models with methods like backtesting, followed by a discussion on stress testing. The book concludes by focussing on the forecasting of risk in very large and uncommon events with extreme value theory and considering the underlying assumptions behind almost every risk model in practical use – that risk is exogenous – and what happens when those assumptions are violated. Every method presented brings together theoretical discussion and derivation of key equations and a discussion of issues in practical implementation. Each method is implemented in both MATLAB and R, two of the most commonly used mathematical programming languages for risk forecasting with which the reader can implement the models illustrated in the book. The book includes four appendices. The first introduces basic concepts in statistics and financial time series referred to throughout the book. The second and third introduce R and MATLAB, providing a discussion of the basic implementation of the software packages. And the final looks at the concept of maximum likelihood, especially issues in implementation and testing. The book is accompanied by a website - www.financialriskforecasting.com – which features downloadable code as used in the book.

Foundations of Mathematical and Computational Economics

Author: Kamran Dadkhah
Publisher: Springer Science & Business Media
ISBN: 9783642137488
Format: PDF, ePub, Docs
Download Now
This is a book on the basics of mathematics and computation and their uses in economics for modern day students and practitioners. The reader is introduced to the basics of numerical analysis as well as the use of computer programs such as Matlab and Excel in carrying out involved computations. Sections are devoted to the use of Maple in mathematical analysis. Examples drawn from recent contributions to economic theory and econometrics as well as a variety of end of chapter exercises help to illustrate and apply the presented concepts.

Microeconometrics and MATLAB An Introduction

Author: Abi Adams
Publisher: Oxford University Press
ISBN: 0198754507
Format: PDF, Kindle
Download Now
This book is written for researchers who use survey data to understand economic behaviour - with a particular focus on an audience of graduate students. The book provides an introduction to MATLAB: a computer language that gives researchers flexible control over how they move between economic theory and empirical methods. MATLAB's flexibility allows researchers to build and adapt their own estimators easily, thereby opening new classes of models that standardeconometrics computer packages do not allow. Despite the reasonably advanced methods introduced, the book is written in an engaging and intuitive way, and is pitched at a levelsuitable for both new graduate students and more advanced researchers. The book starts with a number of foundation chapters, before moving on to more advanced techniques. Sections are succinctly written containing fundamental economic and computational details, as well as advanced questions and research suggestions for further extensions.