Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Author: Uri M. Ascher
Publisher: SIAM
ISBN: 9781611971231
Format: PDF, Mobi
Download Now
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.

Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations

Author: A.K. Aziz
Publisher: Academic Press
ISBN: 1483267997
Format: PDF, ePub, Mobi
Download Now
Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations covers the proceedings of the 1974 Symposium by the same title, held at the University of Maryland, Baltimore Country Campus. This symposium aims to bring together a number of numerical analysis involved in research in both theoretical and practical aspects of this field. This text is organized into three parts encompassing 15 chapters. Part I reviews the initial and boundary value problems. Part II explores a large number of important results of both theoretical and practical nature of the field, including discussions of the smooth and local interpolant with small K-th derivative, the occurrence and solution of boundary value reaction systems, the posteriori error estimates, and boundary problem solvers for first order systems based on deferred corrections. Part III highlights the practical applications of the boundary value problems, specifically a high-order finite-difference method for the solution of two-point boundary-value problems on a uniform mesh. This book will prove useful to mathematicians, engineers, and physicists.

The Numerical Solution of Ordinary and Partial Differential Equations

Author: Granville Sewell
Publisher: World Scientific
ISBN: 9814635111
Format: PDF, ePub, Docs
Download Now
This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A. The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions. Contents:Direct Solution of Linear SystemsInitial Value Ordinary Differential EquationsThe Initial Value Diffusion ProblemThe Initial Value Transport and Wave ProblemsBoundary Value ProblemsThe Finite Element MethodsAppendix A — Solving PDEs with PDE2DAppendix B — The Fourier Stability MethodAppendix C — MATLAB ProgramsAppendix D — Answers to Selected Exercises Readership: Undergraduate, graduate students and researchers. Key Features:The discussion of stability, absolute stability and stiffness in Chapter 1 is clearer than in other textsStudents will actually learn to write programs solving a range of simple PDEs using the finite element method in chapter 5In Appendix A, students will be able to solve quite difficult PDEs, using the author's software package, PDE2D. (a free version is available which solves small to moderate sized problems)Keywords:Differential Equations;Partial Differential Equations;Finite Element Method;Finite Difference Method;Computational Science;Numerical AnalysisReviews: "This book is very well written and it is relatively easy to read. The presentation is clear and straightforward but quite rigorous. This book is suitable for a course on the numerical solution of ODEs and PDEs problems, designed for senior level undergraduate or beginning level graduate students. The numerical techniques for solving problems presented in the book may also be useful for experienced researchers and practitioners both from universities or industry." Andrzej Icha Pomeranian Academy in Słupsk Poland

Numerical Solution of Nonlinear Boundary Value Problems with Applications

Author: Milan Kubicek
Publisher: Courier Corporation
ISBN: 0486463001
Format: PDF
Download Now
A survey of the development, analysis, and application of numerical techniques in solving nonlinear boundary value problems, this text presents numerical analysis as a working tool for physicists and engineers. Starting with a survey of accomplishments in the field, it explores initial and boundary value problems for ordinary differential equations, linear boundary value problems, and the numerical realization of parametric studies in nonlinear boundary value problems. The authors--Milan Kubicek, Professor at the Prague Institute of Chemical Technology, and Vladimir Hlavacek, Professor at the University of Buffalo--emphasize the description and straightforward application of numerical techniques rather than underlying theory. This approach reflects their extensive experience with the application of diverse numerical algorithms.

Numerical Solution of Ordinary Differential Equations

Author: Kendall Atkinson
Publisher: John Wiley & Sons
ISBN: 1118164520
Format: PDF, Kindle
Download Now
A concise introduction to numerical methodsand the mathematical framework neededto understand their performance Numerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' collective academic experience ensures a coherent and accessible discussion of key topics, including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB® programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics. Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper-undergraduate and beginning graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.

Analytical Solution Methods for Boundary Value Problems

Author: A.S. Yakimov
Publisher: Academic Press
ISBN: 0128043636
Format: PDF, ePub
Download Now
Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems. Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods. Discusses the theory and analytical methods for many differential equations appropriate for applied and computational mechanics researchers Addresses pertinent boundary problems in mathematical physics achieved without using the theory of series Includes results that can be used to address nonlinear equations in heat conductivity for the solution of conjugate heat transfer problems and the equations of telegraph and nonlinear transport equation Covers select method solutions for applied mathematicians interested in transport equations methods and thermal protection studies Features extensive revisions from the Russian original, with 115+ new pages of new textual content

Numerical Solution of Differential Equations

Author: Isaac Fried
Publisher: Academic Press
ISBN: 1483262529
Format: PDF, Docs
Download Now
Numerical Solution of Differential Equations is a 10-chapter text that provides the numerical solution and practical aspects of differential equations. After a brief overview of the fundamentals of differential equations, this book goes on presenting the principal useful discretization techniques and their theoretical aspects, along with geometrical and physical examples, mainly from continuum mechanics. Considerable chapters are devoted to the development of the techniques of the numerical solution of differential equations and their analysis. The remaining chapters explore the influential invention in computational mechanics-finite elements. Each chapter emphasizes the relationship among the analytic formulation of the physical event, the discretization techniques applied to it, the algebraic properties of the discrete systems created, and the properties of the digital computer. This book will be of great value to undergraduate and graduate mathematics and physics students.

Differential Equations with Boundary Value Problems

Author: Dennis G. Zill
Publisher: Cengage Learning
ISBN: 1305965795
Format: PDF
Download Now
DIFFERENTIAL EQUATIONS WITH BOUNDARY-VALUE PROBLEMS, 9th Edition, strikes a balance between the analytical, qualitative, and quantitative approaches to the study of Differential Equations. This proven text speaks to students of varied majors through a wealth of pedagogical aids, including an abundance of examples, explanations, Remarks boxes, and definitions. Written in a straightforward, readable, and helpful style, the book provides a thorough overview of the topics typically taught in a first course in Differential Equations as well as an introduction to boundary-value problems and partial Differential Equations. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.