Object Categorization

Author: Sven J. Dickinson
Publisher: Cambridge University Press
ISBN: 0521887380
Format: PDF, ePub
Download Now
A unique multidisciplinary perspective on the problem of visual object categorization.

Computer Vision ECCV 2014

Author: David Fleet
Publisher: Springer
ISBN: 3319105787
Format: PDF, ePub, Docs
Download Now
The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions.

How Humans Recognize Objects Segmentation Categorization and Individual Identification

Author: Chris Fields
Publisher: Frontiers Media SA
ISBN: 2889199401
Format: PDF, Docs
Download Now
Human beings experience a world of objects: bounded entities that occupy space and persist through time. Our actions are directed toward objects, and our language describes objects. We categorize objects into kinds that have different typical properties and behaviors. We regard some kinds of objects – each other, for example – as animate agents capable of independent experience and action, while we regard other kinds of objects as inert. We re-identify objects, immediately and without conscious deliberation, after days or even years of non-observation, and often following changes in the features, locations, or contexts of the objects being re-identified. Comparative, developmental and adult observations using a variety of approaches and methods have yielded a detailed understanding of object detection and recognition by the visual system and an advancing understanding of haptic and auditory information processing. Many fundamental questions, however, remain unanswered. What, for example, physically constitutes an “object”? How do specific, classically-characterizable object boundaries emerge from the physical dynamics described by quantum theory, and can this emergence process be described independently of any assumptions regarding the perceptual capabilities of observers? How are visual motion and feature information combined to create object information? How are the object trajectories that indicate persistence to human observers implemented, and how are these trajectory representations bound to feature representations? How, for example, are point-light walkers recognized as single objects? How are conflicts between trajectory-driven and feature-driven identifications of objects resolved, for example in multiple-object tracking situations? Are there separate “what” and “where” processing streams for haptic and auditory perception? Are there haptic and/or auditory equivalents of the visual object file? Are there equivalents of the visual object token? How are object-identification conflicts between different perceptual systems resolved? Is the common assumption that “persistent object” is a fundamental innate category justified? How does the ability to identify and categorize objects relate to the ability to name and describe them using language? How are features that an individual object had in the past but does not have currently represented? How are categorical constraints on how objects move or act represented, and how do such constraints influence categorization and the re-identification of individuals? How do human beings re-identify objects, including each other, as persistent individuals across changes in location, context and features, even after gaps in observation lasting months or years? How do human capabilities for object categorization and re-identification over time relate to those of other species, and how do human infants develop these capabilities? What can modeling approaches such as cognitive robotics tell us about the answers to these questions? Primary research reports, reviews, and hypothesis and theory papers addressing questions relevant to the understanding of perceptual object segmentation, categorization and individual identification at any scale and from any experimental or modeling perspective are solicited for this Research Topic. Papers that review particular sets of issues from multiple disciplinary perspectives or that advance integrative hypotheses or models that take data from multiple experimental approaches into account are especially encouraged.

Shape Perception in Human and Computer Vision

Author: Sven J. Dickinson
Publisher: Springer Science & Business Media
ISBN: 144715195X
Format: PDF, Kindle
Download Now
This comprehensive and authoritative text/reference presents a unique, multidisciplinary perspective on Shape Perception in Human and Computer Vision. Rather than focusing purely on the state of the art, the book provides viewpoints from world-class researchers reflecting broadly on the issues that have shaped the field. Drawing upon many years of experience, each contributor discusses the trends followed and the progress made, in addition to identifying the major challenges that still lie ahead. Topics and features: examines each topic from a range of viewpoints, rather than promoting a specific paradigm; discusses topics on contours, shape hierarchies, shape grammars, shape priors, and 3D shape inference; reviews issues relating to surfaces, invariants, parts, multiple views, learning, simplicity, shape constancy and shape illusions; addresses concepts from the historically separate disciplines of computer vision and human vision using the same “language” and methods.

Hierarchical Object Representations in the Visual Cortex and Computer Vision

Author: Antonio Rodríguez-Sánchez
Publisher: Frontiers Media SA
ISBN: 2889197980
Format: PDF, Kindle
Download Now
Over the past 40 years, neurobiology and computational neuroscience has proved that deeper understanding of visual processes in humans and non-human primates can lead to important advancements in computational perception theories and systems. One of the main difficulties that arises when designing automatic vision systems is developing a mechanism that can recognize - or simply find - an object when faced with all the possible variations that may occur in a natural scene, with the ease of the primate visual system. The area of the brain in primates that is dedicated at analyzing visual information is the visual cortex. The visual cortex performs a wide variety of complex tasks by means of simple operations. These seemingly simple operations are applied to several layers of neurons organized into a hierarchy, the layers representing increasingly complex, abstract intermediate processing stages. In this Research Topic we propose to bring together current efforts in neurophysiology and computer vision in order 1) To understand how the visual cortex encodes an object from a starting point where neurons respond to lines, bars or edges to the representation of an object at the top of the hierarchy that is invariant to illumination, size, location, viewpoint, rotation and robust to occlusions and clutter; and 2) How the design of automatic vision systems benefit from that knowledge to get closer to human accuracy, efficiency and robustness to variations.

Object Categorization

Author: Axel Pinz
Publisher: Now Publishers Inc
ISBN: 1933019131
Format: PDF, ePub, Mobi
Download Now
This article presents foundations, original research and trends in the field of object categorization by computer vision methods. The research goals in object categorization are to detect objects in images and to determine the object's categories. Categorization aims for the recognition of generic classes of objects, and thus has also been termed 'generic object recognition'. This is in contrast to the recognition of specific, individual objects. While humans are usually better in generic than in specific recognition, categorization is much harder to achieve for today's computer architectures.

Plasticity in Sensory Systems

Author: Jennifer K. E. Steeves
Publisher: Cambridge University Press
ISBN: 1107022622
Format: PDF, ePub, Docs
Download Now
This broad exploration of research in plasticity in sensory systems focuses on visual and auditory systems. Topics include visual and visuomotor learning, sensory adaptations as a result of visual loss in childhood, plasticity in the adult visual system, plasticity across the senses, and new techniques in vision recovery, rehabilitation, and sensory substitution.

Color in Computer Vision

Author: Theo Gevers
Publisher: John Wiley & Sons
ISBN: 1118350073
Format: PDF, ePub, Mobi
Download Now
While the field of computer vision drives many of today’s digital technologies and communication networks, the topic of color has emerged only recently in most computer vision applications. One of the most extensive works to date on color in computer vision, this book provides a complete set of tools for working with color in the field of image understanding. Based on the authors’ intense collaboration for more than a decade and drawing on the latest thinking in the field of computer science, the book integrates topics from color science and computer vision, clearly linking theories, techniques, machine learning, and applications. The fundamental basics, sample applications, and downloadable versions of the software and data sets are also included. Clear, thorough, and practical, Color in Computer Vision explains: Computer vision, including color-driven algorithms and quantitative results of various state-of-the-art methods Color science topics such as color systems, color reflection mechanisms, color invariance, and color constancy Digital image processing, including edge detection, feature extraction, image segmentation, and image transformations Signal processing techniques for the development of both image processing and machine learning Robotics and artificial intelligence, including such topics as supervised learning and classifiers for object and scene categorization Researchers and professionals in computer science, computer vision, color science, electrical engineering, and signal processing will learn how to implement color in computer vision applications and gain insight into future developments in this dynamic and expanding field.

Scene Vision

Author: Kestutis Kveraga
Publisher: MIT Press
ISBN: 0262027852
Format: PDF, ePub
Download Now
In this volume, pioneering researchers address the visual cognition of scenes from neuroimaging, psychology, modeling, electrophysiology and computer vision perspectives.

Computer Vision

Author: Roberto Cipolla
Publisher: Springer
ISBN: 3642128483
Format: PDF, ePub, Docs
Download Now
Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems. The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year. A summary of the past Computer Vision Summer Schools can be found at: http://www.dmi.unict.it/icvss This edited volume contains a selection of articles covering some of the talks and tutorials held during the first two editions of the school on topics such as Recognition, Registration and Reconstruction. The chapters provide an in-depth overview of these challenging areas with key references to the existing literature.