One dimensional Nanostructures for PEM Fuel Cell Applications

Author: Shangfeng Du
Publisher: Academic Press
ISBN: 0128111135
Format: PDF, ePub, Docs
Download Now
One-dimensional Nanostructures for PEM Fuel Cell Applications provides a review of the progress made in 1D catalysts for applications in polymer electrolyte fuel cells. It highlights the improved understanding of catalytic mechanisms on 1D nanostructures and the new approaches developed for practical applications, also including a critical perspective on current research limits. The book serves as a reference for the design and development of a new generation of catalysts to assist in the realization of successful commercial use that have the potential to decarbonize the domestic heat and transport sectors. In addition, a further commercialization of this technology requires advanced catalysts to address major obstacles faced by the commonly used Pt/C nanoparticles. The unique structure of one-dimensional nanostructures give them advantages to overcome some drawbacks of Pt/C nanoparticles as a new type of excellent catalysts for fuel cell reactions. In recent years, great efforts have been devoted in this area, and much progress has been achieved. Provides a review of 1D catalysts for applications in polymer electrolyte fuel cells Presents an ideal reference for the design and development of a new generation of catalysts to assist in the realization of successful commercial use Highlights the progress made in recent years in this emerging field

One Dimensional nanostructures

Author: Zhenyu Li
Publisher: Springer Science & Business Media
ISBN: 3642364276
Format: PDF, ePub, Docs
Download Now
One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers is a comprehensive book depicting the electrospinning technique and related 1D unique electrospun nanofibers. The first part of the book focuses on electrospinning technique, with chapters describing Electrospinning setup, electrospinning theories, and related working parameter. The second part of the book describes in detail specific topics on how to control the electrospun fiber properties such as how to control the fiber direction, how to control the fiber surface morphology, how to control the fiber structure, and how to construct 3D structures by electrospun fibers. The final part of the book depicts the applications of the electrospun nanofibers, with sections describing in detail specific fields such as electrospun nanofiber reinforcement, filtration, electronic devices, lithium-ion batteries, fuel cells, biomedical field, and so on. One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers is designed to bring state-of-the-art on electrospinning together into a single book and will be valuable resource for scientists in the electrospinning field and other scientists involved in biomedical field, mechanical field, materials, and energy field. Dr. Zhenyu Li is an associate professor at the Dept. of Chemistry, Jilin University, Changchun, P. R. China. Currently, he also holds the position in Australian Future Fibres Research & Innovation Centre, Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia. Dr. Ce Wang is a professor at the Dept. of Chemistry, Jilin University, Changchun, P. R. China.

Two Dimensional Nanostructures

Author: Mahmood Aliofkhazraei
Publisher: CRC Press
ISBN: 1439866651
Format: PDF
Download Now
After the 2010 Nobel Prize in Physics was awarded to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene," even more research and development efforts have been focused on two-dimensional nanostructures. Illustrating the importance of this area in future applications, Two-Dimensional Nanostructures covers the fabrication methods and properties of these materials. The authors begin with discussions on the properties, size effect, applications, classification groups, and growth of nanostructures. They then describe various characterization and fabrication methods, such as spectrometry, low-energy electron diffraction, physical and chemical vapor deposition, and molecular beam epitaxy. The remainder of the text focuses on mechanical, chemical, and physical properties and fabrication methods, including a new mechanical method for fabricating graphene layers and a model for relating the features and structures of nanostructured thin films. With companies already demonstrating the capabilities of graphene in a flexible touch-screen and a 150 GHz transistor, nanostructures are on their way to replacing silicon as the materials of choice in electronics and other areas. This book aids you in understanding the current chemical, mechanical, and physical processes for producing these "miracle materials."

Nanopatterned and Nanoparticle Modified Electrodes

Author: Richard C. Alkire
Publisher: John Wiley & Sons
ISBN: 3527340963
Format: PDF, Docs
Download Now
Volume XVII in the "Advances in Electrochemical Science and Engineering" series, this monograph covers progress in this rapidly developing field with a particular emphasis on important applications, including spectroscopy, medicinal chemistry and analytical chemistry. As such it covers nanopatterned and nanoparticle-modified electrodes for analytical detection, surface spectroscopy, electrocatalysis and a fundamental understanding of the relation between the electrode structure and its function. Written by a group of international experts, this is a valuable resource for researchers working in such fields as electrochemistry, materials science, spectroscopy, analytical and medicinal chemistry.

PEM Fuel Cell Electrocatalysts and Catalyst Layers

Author: Jiujun Zhang
Publisher: Springer Science & Business Media
ISBN: 1848009364
Format: PDF, ePub
Download Now
Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.

Directory of Graduate Research

Author: American Chemical Society. Committee on Professional Training
Publisher:
ISBN:
Format: PDF, ePub
Download Now
Faculties, publications and doctoral theses in departments or divisions of chemistry, chemical engineering, biochemistry and pharmaceutical and/or medicinal chemistry at universities in the United States and Canada.

PEM Fuel Cell Diagnostic Tools

Author: Haijiang Wang
Publisher: CRC Press
ISBN: 1439839204
Format: PDF, ePub
Download Now
PEM Fuel Cell Diagnostic Tools presents various tools for diagnosing PEM fuel cells and stacks, including in situ and ex situ diagnostic tools, electrochemical techniques, and physical/chemical methods. The text outlines the principles, experimental implementation, data processing, and application of each technique, along with its capabilities and weaknesses. The book covers many diagnostics employed in the characterization and determination of fuel cell performance. It discusses commonly used conventional tools, such as cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, and transmission electron microscopy. It also examines special tools developed specifically for PEM fuel cells, including transparent cells, cathode discharge, and current mapping, as well as recent advanced tools for diagnosis, such as magnetic resonance imaging and atomic force microscopy. For clarity, the book splits these diagnostic methodologies into two parts—in situ and ex situ. To better understand the tools, PEM fuel cell testing is also discussed. Each self-contained chapter provides cross-references to other chapters. Written by international scientists active in PEM fuel cell research, this volume incorporates state-of-the-art technical advances in PEM fuel cell diagnosis. The diagnostic tools presented help readers to understand the physical and chemical phenomena involved in PEM fuel cells.

Controlled Nanofabrication

Author: Liu Ru-Shi
Publisher: CRC Press
ISBN: 9814364517
Format: PDF
Download Now
When the size and the shape of materials are reduced to the nanoscale dimension, their physical and chemical properties can change dramatically. This book demonstrates the controlled size and shape of nanostructured materials and their applications. The applications cover photocatalysts, biomedicals, nanomaterials, fuel cells and supercapacitors, lithium-ion batteries, light-emitting diodes, and field emission display. This book may be the first to clearly point out the relationship between the size and the structure of the materials, which strongly affects their properties. Understanding these control parameters has important technological implications for energy conversion and storage, biotechnology, lighting and display, and so forth.

Materialien und Systeme

Author: Uwe Hartmann
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3486855425
Format: PDF, Kindle
Download Now
Volume 2 of this four-part textbook is devoted to the full range of materials relevant to nanostructural research and nanotechnology. These materials encompass soft condensed matter, including biological matter, along with nano-scale building blocks in the form of monolayer films, nanotubes, clusters, and biological machines.

Development of Novel Nanomaterials for High performance and Low cost Fuel Cell Applicatgions

Author: Shuhu Sun
Publisher:
ISBN:
Format: PDF, Mobi
Download Now
Proton exchange membrane fuel cells (PEMFCs) are promising energy converting technologies to generate electricity by mainly using hydrogen as a fuel, producing water as the only exhaust. However, short life-time and high cost of Pt catalyst are the main obstacles for the commercialization of PEMFCs. In the conventional carbon black upported platinum nanoparticle (NP) commercial catalyst, carbon supports are prone to oxidation and corrosion over time that results in Pt NPs migration, coalescence, even detaching from the catalyst support. In addition, Ostwald ripening of the Pt NPs could also occur due to their high surface energy and zero dimensional structural features. All these contribute to the degradation of fuel cell performance. This research aims at fabricating various advanced nanomaterials, including (1) Pt-based highly efficient nanocatalysts and (2) alternative nanostructured durable catalyst supports, to address the above-mentioned challenges in PEMFCs. It is well known that the catalytic activity and durability of Pt catalysts are highly dependent on their size and shape. In contrast to commercially-used Pt spherical nanoparticles, one-dimensional (1D) structures of Pt, such as nanowires (NWs), exhibit additional advantages associated with their anisotropy and unique structure. We first reported a new approach to address both activity and durability challenges of PEM fuel cells by using 1D Pt nanowires (PtNWs) as electrocatalyst. Pt NWs were synthesized via a very simple environmentally-friendly aqueous solution route at room temperature, without the need of heating, surfactants or complicated experimental apparatus. This novel PtNW nanostructure showed much improved activity and durability than the state-of-the-art commercial Pt/C catalyst which is made of Pt nanoparticles. Further, Pt NWs were grown on [email protected] nanocable support to form a novel 3D fuel-cell electrode (PtNW/[email protected]). This approach allows us to combine the advantages of both PtNW catalyst and [email protected] 3D nanocable support for fuel cell applications. The PtNW/[email protected] 3D electrodes showed greatly enhanced electrocatalytic activities for ORR, MOR and improved CO tolerance than commercial Pt/C nanoparticle catalyst. To save more platinum, ultrathin Pt NWs with even smaller diameters of 2.5 nm (vs. 4 nm reported in our previous work) have been successfully synthesized when using N-doped CNTs as support. Direct evidence for the formation of ultrathin Pt NWs was provided by systematically investigating their growth process under TEM. Nitrogen doping in CNTs played a key role in the formation of ultrathin Pt nanowires. In terms of low durability of PEM fuel cell catalysts, the corrosion of current commonly-used carbon black support materials have been identified to be the major contributor to the catalyst failure. One of the major challenges lies in the development of inexpensive, efficient, and highly durable alternative catalyst supports that possess high corrosion resistance, high conductivity and high surface area. In this work, a series of promising alternative nanostructured catalyst supports, including 0D Nb-doped CNTs as support. Direct evidence for the formation of ultrathin Pt NWs was provided by systematically investigating their growth process under TEM. Nitrogen doping in CNTs played a key role in the formation of ultrathin Pt nanowires. In terms of low durability of PEM fuel cell catalysts, the corrosion of current commonly-used carbon black support materials have been identified to be the major contributor to the catalyst failure. One of the major challenges lies in the development of inexpensive, efficient, and highly durable alternative catalyst supports that possess high corrosion resistance, high conductivity and high surface area. In this work, a series of promising alternative nanostructured catalyst supports, including 0D Nb-doped TiO2 hollow nanospheres, 1D TiSix-NCNT nanostructures, and 2D graphene nanosheets, have been synthesized by various methods and used as catalyst supports. Pt nanoparticles were then deposited on these novel supports, showing enhanced catalytic activities and durabilities. Most interestingly, a new technique, atomic layer deposition (ALD), was used to uniformly deposit Pt nanoparticles, subnanometer clusters and single atoms on graphene nanosheets. Downsizing Pt nanoparticles to clusters or even single atoms could significantly increase their catalytic activity and is therefore highly desirable to maximize the efficiency. In summary, the discoveries in this thesis contribute to applying various novel nanostructured materials to design highly active and stable electrocatalyst and durable catalyst support to develop high performance and low cost PEM fuel cells.