## Oriented Matroids

Author: Anders Björner
Publisher: Cambridge University Press
ISBN: 9780521777506
Format: PDF, ePub

First comprehensive, accessible account; second edition has expanded bibliography and a new appendix surveying recent research.

## Matroids A Geometric Introduction

Author: Gary Gordon
Publisher: Cambridge University Press
ISBN: 1139536087
Format: PDF, Docs

Matroid theory is a vibrant area of research that provides a unified way to understand graph theory, linear algebra and combinatorics via finite geometry. This book provides the first comprehensive introduction to the field which will appeal to undergraduate students and to any mathematician interested in the geometric approach to matroids. Written in a friendly, fun-to-read style and developed from the authors' own undergraduate courses, the book is ideal for students. Beginning with a basic introduction to matroids, the book quickly familiarizes the reader with the breadth of the subject, and specific examples are used to illustrate the theory and to help students see matroids as more than just generalizations of graphs. Over 300 exercises are included, with many hints and solutions so students can test their understanding of the materials covered. The authors have also included several projects and open-ended research problems for independent study.

## New Perspectives in Algebraic Combinatorics

Author: Louis J. Billera
Publisher: Cambridge University Press
ISBN: 9780521770873
Format: PDF, Mobi

2000 text containing expository contributions by respected researchers on the connections between algebraic geometry, topology, commutative algebra, representation theory, and convex geometry.

## Topics in Hyperplane Arrangements

Author: Marcelo Aguiar
Publisher: American Mathematical Soc.
ISBN: 1470437112
Format: PDF, ePub, Mobi

This monograph studies the interplay between various algebraic, geometric and combinatorial aspects of real hyperplane arrangements. It provides a careful, organized and unified treatment of several recent developments in the field, and brings forth many new ideas and results. It has two parts, each divided into eight chapters, and five appendices with background material. Part I gives a detailed discussion on faces, flats, chambers, cones, gallery intervals, lunes and other geometric notions associated with arrangements. The Tits monoid plays a central role. Another important object is the category of lunes which generalizes the classical associative operad. Also discussed are the descent and lune identities, distance functions on chambers, and the combinatorics of the braid arrangement and related examples. Part II studies the structure and representation theory of the Tits algebra of an arrangement. It gives a detailed analysis of idempotents and Peirce decompositions, and connects them to the classical theory of Eulerian idempotents. It introduces the space of Lie elements of an arrangement which generalizes the classical Lie operad. This space is the last nonzero power of the radical of the Tits algebra. It is also the socle of the left ideal of chambers and of the right ideal of Zie elements. Zie elements generalize the classical Lie idempotents. They include Dynkin elements associated to generic half-spaces which generalize the classical Dynkin idempotent. Another important object is the lune-incidence algebra which marks the beginning of noncommutative Möbius theory. These ideas are also brought upon the study of the Solomon descent algebra. The monograph is written with clarity and in sufficient detail to make it accessible to graduate students. It can also serve as a useful reference to experts.

## Pattern Recognition on Oriented Matroids

Author: Andrey O. Matveev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110531143
Format: PDF, Mobi

Pattern Recognition on Oriented Matroids covers a range of innovative problems in combinatorics, poset and graph theories, optimization, and number theory that constitute a far-reaching extension of the arsenal of committee methods in pattern recognition. The groundwork for the modern committee theory was laid in the mid-1960s, when it was shown that the familiar notion of solution to a feasible system of linear inequalities has ingenious analogues which can serve as collective solutions to infeasible systems. A hierarchy of dialects in the language of mathematics, for instance, open cones in the context of linear inequality systems, regions of hyperplane arrangements, and maximal covectors (or topes) of oriented matroids, provides an excellent opportunity to take a fresh look at the infeasible system of homogeneous strict linear inequalities – the standard working model for the contradictory two-class pattern recognition problem in its geometric setting. The universal language of oriented matroid theory considerably simplifies a structural and enumerative analysis of applied aspects of the infeasibility phenomenon. The present book is devoted to several selected topics in the emerging theory of pattern recognition on oriented matroids: the questions of existence and applicability of matroidal generalizations of committee decision rules and related graph-theoretic constructions to oriented matroids with very weak restrictions on their structural properties; a study (in which, in particular, interesting subsequences of the Farey sequence appear naturally) of the hierarchy of the corresponding tope committees; a description of the three-tope committees that are the most attractive approximation to the notion of solution to an infeasible system of linear constraints; an application of convexity in oriented matroids as well as blocker constructions in combinatorial optimization and in poset theory to enumerative problems on tope committees; an attempt to clarify how elementary changes (one-element reorientations) in an oriented matroid affect the family of its tope committees; a discrete Fourier analysis of the important family of critical tope committees through rank and distance relations in the tope poset and the tope graph; the characterization of a key combinatorial role played by the symmetric cycles in hypercube graphs. Contents Oriented Matroids, the Pattern Recognition Problem, and Tope Committees Boolean Intervals Dehn–Sommerville Type Relations Farey Subsequences Blocking Sets of Set Families, and Absolute Blocking Constructions in Posets Committees of Set Families, and Relative Blocking Constructions in Posets Layers of Tope Committees Three-Tope Committees Halfspaces, Convex Sets, and Tope Committees Tope Committees and Reorientations of Oriented Matroids Topes and Critical Committees Critical Committees and Distance Signals Symmetric Cycles in the Hypercube Graphs

## Handbook of Enumerative Combinatorics

Author: Miklos Bona
Publisher: CRC Press
ISBN: 1482220865
Format: PDF

Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today’s most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods. This important new work is edited by Miklós Bóna of the University of Florida where he is a member of the Academy of Distinguished Teaching Scholars. He received his Ph.D. in mathematics at Massachusetts Institute of Technology in 1997. Miklós is the author of four books and more than 65 research articles, including the award-winning Combinatorics of Permutations. Miklós Bóna is an editor-in-chief for the Electronic Journal of Combinatorics and Series Editor of the Discrete Mathematics and Its Applications Series for CRC Press/Chapman and Hall. The first two chapters provide a comprehensive overview of the most frequently used methods in combinatorial enumeration, including algebraic, geometric, and analytic methods. These chapters survey generating functions, methods from linear algebra, partially ordered sets, polytopes, hyperplane arrangements, and matroids. Subsequent chapters illustrate applications of these methods for counting a wide array of objects. The contributors for this book represent an international spectrum of researchers with strong histories of results. The chapters are organized so readers advance from the more general ones, namely enumeration methods, towards the more specialized ones. Topics include coverage of asymptotic normality in enumeration, planar maps, graph enumeration, Young tableaux, unimodality, log-concavity, real zeros, asymptotic normality, trees, generalized Catalan paths, computerized enumeration schemes, enumeration of various graph classes, words, tilings, pattern avoidance, computer algebra, and parking functions. This book will be beneficial to a wide audience. It will appeal to experts on the topic interested in learning more about the finer points, readers interested in a systematic and organized treatment of the topic, and novices who are new to the field.

## Internationale Mathematische Nachrichten

Author:
Publisher:
ISBN:
Format: PDF, Mobi

Issues for Dec. 1952- include section: Nachrichten der Österreichischen Mathematischen Gesellschaft.

## Spatial Information Theory Foundations of Geographic Information Science

Author: Werner Kuhn
Publisher: Springer
ISBN:
Format: PDF, Docs

This book constitutes the refereed proceedings of the International Conference on Spatial Information Theory, COSIT 2003, held at Kartause Ittingen, Switzerland, in September 2003. The 26 revised full papers presented were carefully reviewed and selected from 61 submissions. The papers are organized in topical sections on ontologies of space and time, reasoning about distances and directions, spatial reasoning - shapes and diagrams, computational approaches, reasoning about regions, vagueness, visualization, and landmarks and wayfinding.

Author:
Publisher:
ISBN:
Format: PDF

## Mathematical Reviews

Author:
Publisher:
ISBN:
Format: PDF, Kindle