Partial Differential Equations of Mathematical Physics

Author: S. L. Sobolev
Publisher: Elsevier
ISBN: 1483181367
Format: PDF, Mobi
Download Now
Pure and Applied Mathematics, Volume 56: Partial Differential Equations of Mathematical Physics provides a collection of lectures related to the partial differentiation of mathematical physics. This book covers a variety of topics, including waves, heat conduction, hydrodynamics, and other physical problems. Comprised of 30 lectures, this book begins with an overview of the theory of the equations of mathematical physics that has its object the study of the integral, differential, and functional equations describing various natural phenomena. This text then examines the linear equations of the second order with real coefficients. Other lectures consider the Lebesgue-Fubini theorem on the possibility of changing the order of integration in a multiple integral. This book discusses as well the Dirichlet problem and the Neumann problem for domains other than a sphere or half-space. The final lecture deals with the properties of spherical functions. This book is a valuable resource for mathematicians.

Partial Differential Equations of Applied Mathematics

Author: Erich Zauderer
Publisher: Wiley-Interscience
ISBN: 9780471315162
Format: PDF
Download Now
The only comprehensive guide to modeling, characterizing, and solving partial differential equations This classic text by Erich Zauderer provides a comprehensive account of partial differential equations and their applications. Dr. Zauderer develops mathematical models that give rise to partial differential equations and describes classical and modern solution techniques. With an emphasis on practical applications, he makes liberal use of real-world examples, explores both linear and nonlinear problems, and provides approximate as well as exact solutions. He also describes approximation methods for simplifying complicated solutions and for solving linear and nonlinear problems not readily solved by standard methods. The book begins with a demonstration of how the three basic types of equations (parabolic, hyperbolic, and elliptic) can be derived from random walk models. It continues in a less statistical vein to cover an exceptionally broad range of topics, including stabilities, singularities, transform methods, the use of Green's functions, and perturbation and asymptotic treatments. Features that set Partial Differential Equations of Applied Mathematics, Second Edition above all other texts in the field include: Coverage of random walk problems, discontinuous and singular solutions, and perturbation and asymptotic methods More than 800 practice exercises, many of which are fully worked out Numerous up-to-date examples from engineering and the physical sciences Partial Differential Equations of Applied Mathematics, Second Edition is a superior advanced-undergraduate to graduate-level text for students in engineering, the sciences, and applied mathematics. The title is also a valuable working resource for professionals in these fields. Dr. Zauderer received his doctorate in mathematics from the New York University-Courant Institute. Prior to joining the staff of Polytechnic University, he was a Senior Weitzmann Fellow of the Weitzmann Institute of Science in Rehovot, Israel.

Partial Differential Equations of Mathematical Physics

Author: S. L. Sobolev
Publisher: Courier Corporation
ISBN: 9780486659640
Format: PDF, Kindle
Download Now
This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.

Homogenization of Partial Differential Equations

Author: Vladimir A. Marchenko
Publisher: Springer Science & Business Media
ISBN: 0817644687
Format: PDF, ePub, Mobi
Download Now
A comprehensive study of homogenized problems, focusing on the construction of nonstandard models Details a method for modeling processes in microinhomogeneous media (radiophysics, filtration theory, rheology, elasticity theory, and other domains) Complete proofs of all main results, numerous examples Classroom text or comprehensive reference for graduate students, applied mathematicians, physicists, and engineers

Mathematics in Physics and Engineering

Author: J. Irving
Publisher: Academic Press
ISBN: 1483276171
Format: PDF, ePub, Mobi
Download Now
Mathematics in Physics and Engineering describes the analytical and numerical (desk-machine) methods that arise in pure and applied science, including wave equations, Bessel and Legendre functions, and matrices. The manuscript first discusses partial differential equations, as well as the method of separation of variables, three-dimensional wave equation, diffusion or heat flow equation, and wave equation in plane and cylindrical polar coordinates. The text also ponders on Frobenius' and other methods of solution. Discussions focus on hypergeometric equation, Bessel's equation, confluent hypergeometric equation, and change of dependent and independent variables. The publication takes a look at Bessel and Legendre functions and Laplace and other transforms, including orthogonal properties, applications from electromagnetism, spherical harmonics, and application to partial differential equations. The book also examines matrices, analytical methods in classical and wave mechanics, calculus of variations, and complex variable theory and conformal transformations. The book is a dependable reference for mathematicians, engineers, and physicists both at undergraduate and postgraduate levels.

An introduction to nonlinear partial differential equations

Author: John David Logan
Publisher: LibreDigital
ISBN: 9780470225950
Format: PDF, ePub, Mobi
Download Now
An Introduction to Nonlinear Partial Differential Equations is a textbook on nonlinear partial differential equations. It is technique oriented with an emphasis on applications and is designed to build a foundation for studying advanced treatises in the field. The Second Edition features an updated bibliography as well as an increase in the number of exercises. All software references have been updated with the latest version of [email protected], the corresponding graphics have also been updated using [email protected] An increased focus on hydrogeology....

Elements of Partial Differential Equations

Author: Ian N. Sneddon
Publisher: Courier Corporation
ISBN: 0486162990
Format: PDF, Mobi
Download Now
This text features numerous worked examples in its presentation of elements from the theory of partial differential equations, emphasizing forms suitable for solving equations. Solutions to odd-numbered problems appear at the end. 1957 edition.