Stable Solutions of Elliptic Partial Differential Equations

Author: Louis Dupaigne
Publisher: CRC Press
ISBN: 1420066552
Format: PDF, ePub, Mobi
Download Now
Stable solutions are ubiquitous in differential equations. They represent meaningful solutions from a physical point of view and appear in many applications, including mathematical physics (combustion, phase transition theory) and geometry (minimal surfaces). Stable Solutions of Elliptic Partial Differential Equations offers a self-contained presentation of the notion of stability in elliptic partial differential equations (PDEs). The central questions of regularity and classification of stable solutions are treated at length. Specialists will find a summary of the most recent developments of the theory, such as nonlocal and higher-order equations. For beginners, the book walks you through the fine versions of the maximum principle, the standard regularity theory for linear elliptic equations, and the fundamental functional inequalities commonly used in this field. The text also includes two additional topics: the inverse-square potential and some background material on submanifolds of Euclidean space.

Partial Differential Equations of Mathematical Physics

Author: S. L. Sobolev
Publisher: Courier Corporation
ISBN: 9780486659640
Format: PDF, ePub, Docs
Download Now
This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.

Partial Differential Equations of Applied Mathematics

Author: Erich Zauderer
Publisher: Wiley-Interscience
ISBN: 9780471315162
Format: PDF, Mobi
Download Now
The only comprehensive guide to modeling, characterizing, and solving partial differential equations This classic text by Erich Zauderer provides a comprehensive account of partial differential equations and their applications. Dr. Zauderer develops mathematical models that give rise to partial differential equations and describes classical and modern solution techniques. With an emphasis on practical applications, he makes liberal use of real-world examples, explores both linear and nonlinear problems, and provides approximate as well as exact solutions. He also describes approximation methods for simplifying complicated solutions and for solving linear and nonlinear problems not readily solved by standard methods. The book begins with a demonstration of how the three basic types of equations (parabolic, hyperbolic, and elliptic) can be derived from random walk models. It continues in a less statistical vein to cover an exceptionally broad range of topics, including stabilities, singularities, transform methods, the use of Green's functions, and perturbation and asymptotic treatments. Features that set Partial Differential Equations of Applied Mathematics, Second Edition above all other texts in the field include: Coverage of random walk problems, discontinuous and singular solutions, and perturbation and asymptotic methods More than 800 practice exercises, many of which are fully worked out Numerous up-to-date examples from engineering and the physical sciences Partial Differential Equations of Applied Mathematics, Second Edition is a superior advanced-undergraduate to graduate-level text for students in engineering, the sciences, and applied mathematics. The title is also a valuable working resource for professionals in these fields. Dr. Zauderer received his doctorate in mathematics from the New York University-Courant Institute. Prior to joining the staff of Polytechnic University, he was a Senior Weitzmann Fellow of the Weitzmann Institute of Science in Rehovot, Israel.

Partial Differential Equations of Mathematical Physics

Author: S. L. Sobolev
Publisher: Elsevier
ISBN: 1483181367
Format: PDF, Mobi
Download Now
Pure and Applied Mathematics, Volume 56: Partial Differential Equations of Mathematical Physics provides a collection of lectures related to the partial differentiation of mathematical physics. This book covers a variety of topics, including waves, heat conduction, hydrodynamics, and other physical problems. Comprised of 30 lectures, this book begins with an overview of the theory of the equations of mathematical physics that has its object the study of the integral, differential, and functional equations describing various natural phenomena. This text then examines the linear equations of the second order with real coefficients. Other lectures consider the Lebesgue-Fubini theorem on the possibility of changing the order of integration in a multiple integral. This book discusses as well the Dirichlet problem and the Neumann problem for domains other than a sphere or half-space. The final lecture deals with the properties of spherical functions. This book is a valuable resource for mathematicians.

Mathematics in Physics and Engineering

Author: J. Irving
Publisher: Academic Press
ISBN: 1483276171
Format: PDF, ePub, Mobi
Download Now
Mathematics in Physics and Engineering describes the analytical and numerical (desk-machine) methods that arise in pure and applied science, including wave equations, Bessel and Legendre functions, and matrices. The manuscript first discusses partial differential equations, as well as the method of separation of variables, three-dimensional wave equation, diffusion or heat flow equation, and wave equation in plane and cylindrical polar coordinates. The text also ponders on Frobenius' and other methods of solution. Discussions focus on hypergeometric equation, Bessel's equation, confluent hypergeometric equation, and change of dependent and independent variables. The publication takes a look at Bessel and Legendre functions and Laplace and other transforms, including orthogonal properties, applications from electromagnetism, spherical harmonics, and application to partial differential equations. The book also examines matrices, analytical methods in classical and wave mechanics, calculus of variations, and complex variable theory and conformal transformations. The book is a dependable reference for mathematicians, engineers, and physicists both at undergraduate and postgraduate levels.

Lecture Notes in Applied Differential Equations of Mathematical Physics

Author: Luiz C. L. Botelho
Publisher: World Scientific
ISBN: 9812814574
Format: PDF, Docs
Download Now
Functional analysis is a well-established powerful method in mathematical physics, especially those mathematical methods used in modern non-perturbative quantum field theory and statistical turbulence. This book presents a unique, modern treatment of solutions to fractional random differential equations in mathematical physics. It follows an analytic approach in applied functional analysis for functional integration in quantum physics and stochastic Langevin?turbulent partial differential equations.

Partial Differential Equations of First Order and Their Applications to Physics

Author: Gustavo López Velázquez
Publisher: World Scientific Publishing Company
ISBN: 9814397504
Format: PDF, ePub, Docs
Download Now
This book tries to point out the mathematical importance of the Partial Differential Equations of First Order (PDEFO) in Physics and Applied Sciences. The intention is to provide mathematicians with a wide view of the applications of this branch in physics, and to give physicists and applied scientists a powerful tool for solving some problems appearing in Classical Mechanics, Quantum Mechanics, Optics, and General Relativity. This book is intended for senior or first year graduate students in mathematics, physics, or engineering curricula. This book is unique in the sense that it covers the applications of PDEFO in several branches of applied mathematics, and fills the theoretical gap between the formal mathematical presentation of the theory and the pure applied tool to physical problems that are contained in other books. Improvements made in this second edition include corrected typographical errors; rewritten text to improve the flow and enrich the material; added exercises in all chapters; new applications in Chapters 1, 2, and 5 and expanded examples. Contents:Geometric Concepts and GeneralitiesPartial Differential Equations of First OrderPhysical Applications INonlinear Partial Differential Equations of First OrderPhysical Applications IICharacteristic Surfaces of Linear Partial Differential Equation of Second Order Readership: Mathematicians, physicists, applied scientists, senior or first year graduate students in mathematics, physics or engineering.

Numerical Time Dependent Partial Differential Equations for Scientists and Engineers

Author: Moysey Brio
Publisher: Academic Press
ISBN: 9780080917047
Format: PDF, ePub
Download Now
It is the first text that in addition to standard convergence theory treats other necessary ingredients for successful numerical simulations of physical systems encountered by every practitioner. The book is aimed at users with interests ranging from application modeling to numerical analysis and scientific software development. It is strongly influenced by the authors research in in space physics, electrical and optical engineering, applied mathematics, numerical analysis and professional software development. The material is based on a year-long graduate course taught at the University of Arizona since 1989. The book covers the first two-semesters of a three semester series. The second semester is based on a semester-long project, while the third semester requirement consists of a particular methods course in specific disciplines like computational fluid dynamics, finite element method in mechanical engineering, computational physics, biology, chemistry, photonics, etc. The first three chapters focus on basic properties of partial differential equations, including analysis of the dispersion relation, symmetries, particular solutions and instabilities of the PDEs; methods of discretization and convergence theory for initial value problems. The goal is to progress from observations of simple numerical artifacts like diffusion, damping, dispersion, and anisotropies to their analysis and management technique, as it is not always possible to completely eliminate them. In the second part of the book we cover topics for which there are only sporadic theoretical results, while they are an integral part and often the most important part for successful numerical simulation. We adopt a more heuristic and practical approach using numerical methods of investigation and validation. The aim is teach students subtle key issues in order to separate physics from numerics. The following topics are addressed: Implementation of transparent and absorbing boundary conditions; Practical stability analysis in the presence of the boundaries and interfaces; Treatment of problems with different temporal/spatial scales either explicit or implicit; preservation of symmetries and additional constraints; physical regularization of singularities; resolution enhancement using adaptive mesh refinement and moving meshes. Self contained presentation of key issues in successful numerical simulation Accessible to scientists and engineers with diverse background Provides analysis of the dispersion relation, symmetries, particular solutions and instabilities of the partial differential equations