Pattern Formation and Dynamics in Nonequilibrium Systems

Author: Michael Cross
Publisher: Cambridge University Press
ISBN: 1139480464
Format: PDF, ePub, Mobi
Download Now
Many exciting frontiers of science and engineering require understanding the spatiotemporal properties of sustained nonequilibrium systems such as fluids, plasmas, reacting and diffusing chemicals, crystals solidifying from a melt, heart muscle, and networks of excitable neurons in brains. This introductory textbook for graduate students in biology, chemistry, engineering, mathematics, and physics provides a systematic account of the basic science common to these diverse areas. This book provides a careful pedagogical motivation of key concepts, discusses why diverse nonequilibrium systems often show similar patterns and dynamics, and gives a balanced discussion of the role of experiments, simulation, and analytics. It contains numerous worked examples and over 150 exercises. This book will also interest scientists who want to learn about the experiments, simulations, and theory that explain how complex patterns form in sustained nonequilibrium systems.

Pattern Formation

Author: Rebecca B. Hoyle
Publisher: Cambridge University Press
ISBN: 9780521817509
Format: PDF
Download Now
Fully illustrated mathematical guide to pattern formation. Includes instructive exercises and examples.

Pattern Formation in Liquid Crystals

Author: Agnes Buka
Publisher: Springer Science & Business Media
ISBN: 9780387946047
Format: PDF, ePub, Docs
Download Now
This volume bridges two topics of considerable current interest: pattern formation in nonequilibrium phenomena and physics of liquid crystals, both active and diverse areas of research. Because liquid crystals form large-scale and regular patterns under the influence of a variety of applied fields they are fruitful materials to study the spontaneous formation and evolution of ordered and disordered patterns. The chapters, each by a noted researcher in the field, briefly summarize the fundamental work done in the 1960s but concentrate on reviewing results from the recent resurgence of interest in the field as well as indicating the direction of current work.

Far from equilibrium Dynamics

Author: Yasumasa Nishiura
Publisher: American Mathematical Soc.
ISBN: 9780821826256
Format: PDF, ePub
Download Now
This book is devoted to the study of evolution of nonequilibrium systems. Such a system usually consists of regions with different dominant scales, which coexist in the space-time where the system lives. In the case of high nonuniformity in special directions, one can see patterns separated by clearly distinguishable boundaries or interfaces. The author considers several examples of nonequilibrium systems. One of the examples describes the invasion of the solid phase into the liquid phase during the crystallization process. Another example is the transition from oxidized to reduced states in certain chemical reactions. An easily understandable example of the transition in the temporal direction is a sound beat, and the author describes typical patterns associated with this phenomenon. The main goal of the book is to present a mathematical approach to the study of highly nonuniform systems and to illustrate it with examples from physics and chemistry. The two main theories discussed are the theory of singular perturbations and the theory of dissipative systems. A set of carefully selected examples of physical and chemical systems nicely illustrates the general methods described in the book.

Granular Patterns

Author: Igor Aranson
Publisher: OUP Oxford
ISBN: 0191560006
Format: PDF, ePub, Mobi
Download Now
This book is a systematic introduction to a new and exciting field of patterns in granular matter. Granular materials are collections of discrete macroscopic solid grains with a typical size large enough that thermal fluctuations are negligible. Despite this seeming simplicity, properties of granular materials are different from conventional solids, liquids and gases due to the dissipative and highly nonlinear nature of forces among grains. The last decade has seen an explosion of interest to nonequilibrium phenomena in granular matter among physicists, both on the experimental and theoretical side. Among these phenomena, one of the most interesting is the ability of granular matter upon mechanical excitation to form highly ordered patterns such as ripples, avalanches, or bands of segregated materials. This book presents a comprehensive review of experiments and novel theoretical concepts needed to understand the mechanisms of pattern formation in granular materials. This book is written for experienced physicists interested in this new rapidly developing field, as well as young researchers and graduate students entering this field. We hope that both experimentalists and theorists already working in the field will find it useful.

Spatio Temporal Pattern Formation

Author: Daniel Walgraef
Publisher: Springer Science & Business Media
ISBN: 1461218500
Format: PDF, ePub
Download Now
Spatio-temporal patterns appear almost everywhere in nature, and their description and understanding still raise important and basic questions. However, if one looks back 20 or 30 years, definite progress has been made in the modeling of insta bilities, analysis of the dynamics in their vicinity, pattern formation and stability, quantitative experimental and numerical analysis of patterns, and so on. Universal behaviors of complex systems close to instabilities have been determined, leading to the wide interdisciplinarity of a field that is now referred to as nonlinear science or science of complexity, and in which initial concepts of dissipative structures or synergetics are deeply rooted. In pioneering domains related to hydrodynamics or chemical instabilities, the interactions between experimentalists and theoreticians, sometimes on a daily basis, have been a key to progress. Everyone in the field praises the role played by the interactions and permanent feedbacks between ex perimental, numerical, and analytical studies in the achievements obtained during these years. Many aspects of convective patterns in normal fluids, binary mixtures or liquid crystals are now understood and described in this framework. The generic pres ence of defects in extended systems is now well established and has induced new developments in the physics of laser with large Fresnel numbers. Last but not least, almost 40 years after his celebrated paper, Turing structures have finally been ob tained in real-life chemical reactors, triggering anew intense activity in the field of reaction-diffusion systems.

Patterns and Interfaces in Dissipative Dynamics

Author: L.M. Pismen
Publisher: Springer Science & Business Media
ISBN: 3540304312
Format: PDF, Mobi
Download Now
Spontaneous pattern formation in nonlinear dissipative systems far from equilibrium occurs in a variety of settings in nature and technology, and has applications ranging from nonlinear optics through solid and fluid mechanics, physical chemistry and chemical engineering to biology. This book explores the forefront of current research, describing in-depth the analytical methods that elucidate the complex evolution of nonlinear dissipative systems.