Pattern Recognition in Industry

Author: Phiroz Bhagat
Publisher: Elsevier
ISBN: 9780080456027
Format: PDF, Mobi
Download Now
"Find it hard to extract and utilise valuable knowledge from the ever-increasing data deluge?" If so, this book will help, as it explores pattern recognition technology and its concomitant role in extracting useful information to build technical and business models to gain competitive industrial advantage. *Based on first-hand experience in the practice of pattern recognition technology and its development and deployment for profitable application in Industry. Phiroz Bhagat is often referred to as the pioneer of neural net and pattern recognition technology, and is uniquely qualified to write this book. He brings more than two decades of experience in the "real-world" application of cutting-edge technology for competitive advantage in industry. Two wave fronts are upon us today: we are being bombarded by an enormous amount of data, and we are confronted by continually increasing technical and business advances. Ideally, the endless stream of data should be one of our major assets. However, this potential asset often tends to overwhelm rather than enrich. Competitive advantage depends on our ability to extract and utilize nuggets of valuable knowledge and insight from this data deluge. The challenges that need to be overcome include the under-utilization of available data due to competing priorities, and the separate and somewhat disparate existing data systems that have difficulty interacting with each other. Conventional approaches to formulating models are becoming progressively more expensive in time and effort. To impart a competitive edge, engineering science in the 21st century needs to augment traditional modelling processes by auto-classifying and self-organizing data; developing models directly from operating experience, and then optimizing the results to provide effective strategies and operating decisions. This approach has wide applicability; in areas ranging from manufacturing processes, product performance and scientific research, to financial and business fields. This monograph explores pattern recognition technology, and its concomitant role in extracting useful knowledge to build technical and business models directly from data, and in optimizing the results derived from these models within the context of delivering competitive industrial advantage. It is not intended to serve as a comprehensive reference source on the subject. Rather, it is based on first-hand experience in the practice of this technology: its development and deployment for profitable application in industry. The technical topics covered in the monograph will focus on the triad of technological areas that constitute the contemporary workhorses of successful industrial application of pattern recognition. These are: systems for self-organising data; data-driven modelling; and genetic algorithms as robust optimizers. "Find it hard to extract and utilise valuable knowledge from the ever-increasing data deluge?" If so, this book will help, as it explores pattern recognition technology and its concomitant role in extracting useful information to build technical and business models to gain competitive industrial advantage. Based on first-hand experience in the practice of pattern recognition technology and its development and deployment for profitable application in Industry. Phiroz Bhagat is often referred to as the pioneer of neural net and pattern recognition technology, and is uniquely qualified to write this book. He brings more than two decades of experience in the "real-world" application of cutting-edge technology for competitive advantage in industry.

Pattern Recognition in Industry

Author: Phiroz Bhagat
Publisher: Elsevier
ISBN: 9780080456027
Format: PDF, ePub, Docs
Download Now
"Find it hard to extract and utilise valuable knowledge from the ever-increasing data deluge?" If so, this book will help, as it explores pattern recognition technology and its concomitant role in extracting useful information to build technical and business models to gain competitive industrial advantage. *Based on first-hand experience in the practice of pattern recognition technology and its development and deployment for profitable application in Industry. Phiroz Bhagat is often referred to as the pioneer of neural net and pattern recognition technology, and is uniquely qualified to write this book. He brings more than two decades of experience in the "real-world" application of cutting-edge technology for competitive advantage in industry. Two wave fronts are upon us today: we are being bombarded by an enormous amount of data, and we are confronted by continually increasing technical and business advances. Ideally, the endless stream of data should be one of our major assets. However, this potential asset often tends to overwhelm rather than enrich. Competitive advantage depends on our ability to extract and utilize nuggets of valuable knowledge and insight from this data deluge. The challenges that need to be overcome include the under-utilization of available data due to competing priorities, and the separate and somewhat disparate existing data systems that have difficulty interacting with each other. Conventional approaches to formulating models are becoming progressively more expensive in time and effort. To impart a competitive edge, engineering science in the 21st century needs to augment traditional modelling processes by auto-classifying and self-organizing data; developing models directly from operating experience, and then optimizing the results to provide effective strategies and operating decisions. This approach has wide applicability; in areas ranging from manufacturing processes, product performance and scientific research, to financial and business fields. This monograph explores pattern recognition technology, and its concomitant role in extracting useful knowledge to build technical and business models directly from data, and in optimizing the results derived from these models within the context of delivering competitive industrial advantage. It is not intended to serve as a comprehensive reference source on the subject. Rather, it is based on first-hand experience in the practice of this technology: its development and deployment for profitable application in industry. The technical topics covered in the monograph will focus on the triad of technological areas that constitute the contemporary workhorses of successful industrial application of pattern recognition. These are: systems for self-organising data; data-driven modelling; and genetic algorithms as robust optimizers. "Find it hard to extract and utilise valuable knowledge from the ever-increasing data deluge?" If so, this book will help, as it explores pattern recognition technology and its concomitant role in extracting useful information to build technical and business models to gain competitive industrial advantage. Based on first-hand experience in the practice of pattern recognition technology and its development and deployment for profitable application in Industry. Phiroz Bhagat is often referred to as the pioneer of neural net and pattern recognition technology, and is uniquely qualified to write this book. He brings more than two decades of experience in the "real-world" application of cutting-edge technology for competitive advantage in industry.

Vein Pattern Recognition

Author: Chuck Wilson
Publisher: CRC Press
ISBN: 1439857563
Format: PDF, ePub
Download Now
As one of the most promising biometric technologies, vein pattern recognition (VPR) is quickly taking root around the world and may soon dominate applications where people focus is key. Among the reasons for VPR’s growing acceptance and use: it is more accurate than many other biometric methods, it offers greater resistance to spoofing, it focuses on people and their privacy, and has few negative cultural connotations. Vein Pattern Recognition: A Privacy-Enhancing Biometric provides a comprehensive and practical look at biometrics in general and at vein pattern recognition specifically. It discusses the emergence of this reliable but underutilized technology and evaluates its capabilities and benefits. The author, Chuck Wilson, an industry veteran with more than 25 years of experience in the biometric and electronic security fields, examines current and emerging VPR technology along with the myriad applications of this dynamic technology. Wilson explains the use of VPR and provides an objective comparison of the different biometric methods in use today—including fingerprint, eye, face, voice recognition, and dynamic signature verification. Highlighting current VPR implementations, including its widespread acceptance and use for identity verification in the Japanese banking industry, the text provides a complete examination of how VPR can be used to protect sensitive information and secure critical facilities. Complete with best-practice techniques, the book supplies invaluable guidance on selecting the right combination of biometric technologies for specific applications and on properly implementing VPR as part of an overall security system.

Computational Intelligence for Pattern Recognition

Author: Witold Pedrycz
Publisher: Springer
ISBN: 3319896296
Format: PDF, Mobi
Download Now
The book presents a comprehensive and up-to-date review of fuzzy pattern recognition. It carefully discusses a range of methodological and algorithmic issues, as well as implementations and case studies, and identifies the best design practices, assesses business models and practices of pattern recognition in real-world applications in industry, health care, administration, and business. Since the inception of fuzzy sets, fuzzy pattern recognition with its methodology, algorithms, and applications, has offered new insights into the principles and practice of pattern classification. Computational intelligence (CI) establishes a comprehensive framework aimed at fostering the paradigm of pattern recognition. The collection of contributions included in this book offers a representative overview of the advances in the area, with timely, in-depth and comprehensive material on the conceptually appealing and practically sound methodology and practices of CI-based pattern recognition.

Image Processing for the Food Industry

Author: E. R. Davies
Publisher: World Scientific
ISBN: 9789810240226
Format: PDF, ePub, Mobi
Download Now
This monograph provides detailed background on the image processing problems encountered in the food industry when automatic control and inspection systems are being designed and installed. It starts with a careful study of image processing and machine vision methodology, and then goes on to analyse how this can be applied in the main areas of food processing and production. A case study approach is used to give relevance to the work, making the book user-friendly. This book will help the food industry to observe 'due diligence', and researchers to be more aware of the problems of analysing images of food products.

Handbook of Pattern Recognition and Computer Vision 5th Edition

Author: Chi-hau Chen
Publisher: World Scientific
ISBN: 9814656534
Format: PDF, Kindle
Download Now
The book provides an up-to-date and authoritative treatment of pattern recognition and computer vision, with chapters written by leaders in the field. On the basic methods in pattern recognition and computer vision, topics range from statistical pattern recognition to array grammars to projective geometry to skeletonization, and shape and texture measures. Recognition applications include character recognition and document analysis, detection of digital mammograms, remote sensing image fusion, and analysis of functional magnetic resonance imaging data, etc.

Pattern Recognition and Machine Learning

Author: Christopher M. Bishop
Publisher: Springer
ISBN: 9781493938438
Format: PDF
Download Now
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Medical Image Recognition Segmentation and Parsing

Author: S. Kevin Zhou
Publisher: Academic Press
ISBN: 0128026766
Format: PDF, ePub
Download Now
This book describes the technical problems and solutions for automatically recognizing and parsing a medical image into multiple objects, structures, or anatomies. It gives all the key methods, including state-of- the-art approaches based on machine learning, for recognizing or detecting, parsing or segmenting, a cohort of anatomical structures from a medical image. Written by top experts in Medical Imaging, this book is ideal for university researchers and industry practitioners in medical imaging who want a complete reference on key methods, algorithms and applications in medical image recognition, segmentation and parsing of multiple objects. Learn: Research challenges and problems in medical image recognition, segmentation and parsing of multiple objects Methods and theories for medical image recognition, segmentation and parsing of multiple objects Efficient and effective machine learning solutions based on big datasets Selected applications of medical image parsing using proven algorithms Provides a comprehensive overview of state-of-the-art research on medical image recognition, segmentation, and parsing of multiple objects Presents efficient and effective approaches based on machine learning paradigms to leverage the anatomical context in the medical images, best exemplified by large datasets Includes algorithms for recognizing and parsing of known anatomies for practical applications

Random Graphs for Statistical Pattern Recognition

Author: David J. Marchette
Publisher: John Wiley & Sons
ISBN: 9780471722083
Format: PDF
Download Now
A timely convergence of two widely used disciplines Random Graphs for Statistical Pattern Recognition is the first book to address the topic of random graphs as it applies to statistical pattern recognition. Both topics are of vital interest to researchers in various mathematical and statistical fields and have never before been treated together in one book. The use of data random graphs in pattern recognition in clustering and classification is discussed, and the applications for both disciplines are enhanced with new tools for the statistical pattern recognition community. New and interesting applications for random graph users are also introduced. This important addition to statistical literature features: Information that previously has been available only through scattered journal articles Practical tools and techniques for a wide range of real-world applications New perspectives on the relationship between pattern recognition and computational geometry Numerous experimental problems to encourage practical applications With its comprehensive coverage of two timely fields, enhanced with many references and real-world examples, Random Graphs for Statistical Pattern Recognition is a valuable resource for industry professionals and students alike.

Handbook Of Pattern Recognition And Computer Vision

Author: Wang Patrick S P
Publisher: World Scientific
ISBN: 9814505218
Format: PDF, Kindle
Download Now
Pattern recognition and computer vision and their applications have experienced enormous progress in research and development over the last two decades. This comprehensive handbook, with chapters by leading experts in their fields, documents both the basics and new and advanced results.The book gives the most total treatment of basic methods in pattern recognition including statistical, neurocomputing, syntactic/structural/grammatical approaches, feature selection and cluster analysis; and an extensive presentation of basic methods in computer vision including texture analysis and models, color, geometrical tools, image sequence analysis, etc. Major and unique applications are also covered, such as food handling using computer vision, non-destructive evaluation of materials, applications in economics and business, medical image recognition and understanding, etc. Broader system aspects are also examined, including optical pattern recognition and architectures for computer vision.Researchers, students and users of pattern recognition and computer vision will find the book an essential reference tool. The volume is also an invaluable collection of basic techniques and principles, which would otherwise be hard to assemble, in one convenient volume.