Planar Multibody Dynamics

Author: Parviz E. Nikravesh
Publisher: CRC Press
ISBN: 1420045741
Format: PDF, ePub
Download Now
Written by Parviz Nikravesh, one of the world’s best known experts in multibody dynamics, Planar Multibody Dynamics: Formulation, Programming, and Applications enhances the quality and ease of design education with extensive use of the latest computerized design tools combined with coverage of classical design and dynamics of machinery principles. Using language that is clear, concise, and to the point, the textbook introduces fundamental theories, computational methods, and program development for analyzing simple to complex planar mechanical systems. The author chose MATLAB® as the programming language, and since students may not be skilled programmers, the examples and exercises provide a tutorial for learning MATLAB. The examples begin with basic commands before introducing students to more advanced programming techniques. The routines developed in each chapter eventually come together to form complete programs for different types of analysis. Pedagogical highlights Contains homework problems at the end of each chapter, some requiring standard pencil-and-paper solution in order to understand the concept and others requiring either programming or the use of existing programs. Electronic highlights All the programs that are listed in the book, and some additional programs, will be available for download and will be updated periodically by the author. Additional materials for instructors, such as a solutions manual and other teaching aids, will also be available on the website. The author organizes the analytical and computational subjects around practical application examples. He uses several examples repeatedly, in various chapters, providing students with a basis for comparison between different formulations. The final chapter describes more extensive modeling and simulation projects. Designed specifically for undergraduates, the book is suitable as a primary text for a course on mechanisms or a supplementary text for a course on dynamics.

Planar Multibody Dynamics

Author: Parviz Nikravesh
Publisher: CRC Press
ISBN: 9781138096127
Format: PDF, Mobi
Download Now
Planar Multibody Dynamics: Formulation, Programming, and Applications, Second Edition enhances the quality and ease of design education with extensive use of the latest computerized design tools combined with coverage of classical design and dynamics of machinery principles. Using clear, concise language, the text introduces fundamental theories, computational methods, and program development for analyzing simple to complex mechanical systems. MATLAB(R) is used throughout, with examples begin with basic commands before introducing students to more advanced programming techniques. The routines developed in each chapter come together to form complete programs for different types of analysis.

Contact Force Models for Multibody Dynamics

Author: Paulo Flores
Publisher: Springer
ISBN: 3319308971
Format: PDF
Download Now
This book analyzes several compliant contact force models within the context of multibody dynamics, while also revisiting the main issues associated with fundamental contact mechanics. In particular, it presents various contact force models, from linear to nonlinear, from purely elastic to dissipative, and describes their parameters. Addressing the different numerical methods and algorithms for contact problems in multibody systems, the book describes the gross motion of multibody systems by using a two-dimensional formulation based on the absolute coordinates and employs different contact models to represent contact-impact events. Results for selected planar multibody mechanical systems are presented and utilized to discuss the main assumptions and procedures adopted throughout this work. The material provided here indicates that the prediction of the dynamic behavior of mechanical systems involving contact-impact strongly depends on the choice of contact force model. In short, the book provides a comprehensive resource for the multibody dynamics community and beyond on modeling contact forces and the dynamics of mechanical systems undergoing contact-impact events.

Kinematic and Dynamic Simulation of Multibody Systems

Author: Javier Garcia de Jalon
Publisher: Springer Science & Business Media
ISBN: 1461226007
Format: PDF, ePub, Docs
Download Now
Mechanical engineering, an engineering discipline born of the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solu tions, among others. The Mechanical Engineering Series features graduate texts and research monographs intended to address the need for informa tion in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that will cover a broad range of concentrations important to mechanical engineering graduate edu cation and research. We are fortunate to have a distinguished roster of consulting editors, each an expert in one of the areas of concentration. The names of the consulting editors are listed on the front page of the volume. The areas of concentration are applied mechanics, biomechanics, computa tional mechanics, dynamic systems and control, energetics, mechanics of material, processing, thermal science, and tribology. Professor Leckie, the consulting editor for applied mechanics, and I are pleased to present this volume of the series: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge by Professors Garcia de Jal6n and Bayo. The selection of this volume underscores again the interest of the Mechanical Engineering Series to provide our readers with topical monographs as well as graduate texts. Austin Texas Frederick F. Ling v The first author dedicates this book to the memory of Prof F. Tegerizo (t 1988), who introduced him to kinematics.

Concepts and Formulations for Spatial Multibody Dynamics

Author: Paulo Flores
Publisher: Springer
ISBN: 3319161903
Format: PDF, Kindle
Download Now
This book will be particularly useful to those interested in multibody simulation (MBS) and the formulation for the dynamics of spatial multibody systems. The main types of coordinates that can be used in the formulation of the equations of motion of constrained multibody systems are described. The multibody system, made of interconnected bodies that undergo large displacements and rotations, is fully defined. Readers will discover how Cartesian coordinates and Euler parameters are utilized and are the supporting structure for all methodologies and dynamic analysis, developed within the multibody systems methodologies. The work also covers the constraint equations associated with the basic kinematic joints, as well as those related to the constraints between two vectors. The formulation of multibody systems adopted here uses the generalized coordinates and the Newton-Euler approach to derive the equations of motion. This formulation results in the establishment of a mixed set of differential and algebraic equations, which are solved in order to predict the dynamic behavior of multibody systems. This approach is very straightforward in terms of assembling the equations of motion and providing all joint reaction forces. The demonstrative examples and discussions of applications are particularly valuable aspects of this book, which builds the reader’s understanding of fundamental concepts.

Advanced Design of Mechanical Systems From Analysis to Optimization

Author: Jorge A.C. Ambrosio
Publisher: Springer Science & Business Media
ISBN: 3211994610
Format: PDF, Docs
Download Now
Multibody systems are used extensively in the investigation of mechanical systems including structural and non-structural applications. It can be argued that among all the areas in solid mechanics the methodologies and applications associated to multibody dynamics are those that provide an ideal framework to aggregate d- ferent disciplines. This idea is clearly reflected, e. g. , in the multidisciplinary applications in biomechanics that use multibody dynamics to describe the motion of the biological entities, in finite elements where multibody dynamics provides - werful tools to describe large motion and kinematic restrictions between system components, in system control where the methodologies used in multibody dynamics are the prime form of describing the systems under analysis, or even in many - plications that involve fluid-structure interaction or aero elasticity. The development of industrial products or the development of analysis tools, using multibody dynamics methodologies, requires that the final result of the devel- ments are the best possible within some limitations, i. e. , they must be optimal. Furthermore, the performance of the developed systems must either be relatively insensitive to some of their design parameters or be sensitive in a controlled manner to other variables. Therefore, the sensitivity analysis of such systems is fundamental to support the decision making process. This book presents a broad range of tools for designing mechanical systems ranging from the kinematic and dynamic analysis of rigid and flexible multibody systems to their advanced optimization.

Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds

Author: Taeyoung Lee
Publisher: Springer
ISBN: 3319569538
Format: PDF, Kindle
Download Now
This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on the configuration manifold. In particular, we introduce a general methodology for obtaining globally valid equations of motion on configuration manifolds that are Lie groups, homogeneous spaces, and embedded manifolds, thereby avoiding the difficulties associated with coordinate singularities. The material is presented in an approachable fashion by considering concrete configuration manifolds of increasing complexity, which then motivates and naturally leads to the more general formulation that follows. Understanding of the material is enhanced by numerous in-depth examples throughout the book, culminating in non-trivial applications involving multi-body systems. This book is written for a general audience of mathematicians, engineers, and physicists with a basic knowledge of mechanics. Some basic background in differential geometry is helpful, but not essential, as the relevant concepts are introduced in the book, thereby making the material accessible to a broad audience, and suitable for either self-study or as the basis for a graduate course in applied mathematics, engineering, or physics.

Dynamics and Balancing of Multibody Systems

Author: Himanshu Chaudhary
Publisher: Springer Science & Business Media
ISBN: 354078179X
Format: PDF, ePub, Mobi
Download Now
This book has evolved from the passionate desire of the authors in using the modern concepts of multibody dynamics for the design improvement of the machineries used in the rural sectors of India and The World. In this connection, the first author took up his doctoral research in 2003 whose findings have resulted in this book. It is expected that such developments will lead to a new research direction MuDRA, an acronym given by the authors to “Multibody Dynamics for Rural Applications. ” The way Mu- DRA is pronounced it means ‘money’ in many Indian languages. It is hoped that practicing MuDRA will save or generate money for the rural people either by saving energy consumption of their machines or making their products cheaper to manufacture, hence, generating more money for their livelihood. In this book, the initial focus was to improve the dynamic behavior of carpet scrapping machines used to wash newly woven hand-knotted c- pets of India. However, the concepts and methodologies presented in the book are equally applicable to non-rural machineries, be they robots or - tomobiles or something else. The dynamic modeling used in this book to compute the inertia-induced and constraint forces for the carpet scrapping machine is based on the concept of the decoupled natural orthogonal c- plement (DeNOC) matrices. The concept is originally proposed by the second author for the dynamics modeling and simulation of serial and - rallel-type multibody systems, e. g.