Polymer Optical Fibres

Author: Christian-Alexander Bunge
Publisher: Woodhead Publishing
ISBN: 0081000561
Format: PDF, ePub, Docs
Download Now
Polymer Optical Fibres: Fibre Types, Materials, Fabrication, Characterization, and Applications explores polymer optical fibers, specifically their materials, fabrication, characterization, measurement techniques, and applications. Optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion, are explained. Other important parameters like mechanical strength, operating temperatures, and processability are also described. Polymer optical fibers (POF) have a number of advantages over glass fibers, such as low cost, flexibility, low weight, electromagnetic immunity, good bandwidth, simple installation, and mechanical stability. Provides systematic and comprehensive coverage of materials, fabrication, properties, measurement techniques, and applications of POF Focuses on industry needs in communication, illumination and sensors, the automotive industry, and medical and biotechnology Features input from leading experts in POF technology, with experience spanning optoelectronics, polymer, and textiles Explains optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion

Optical Interconnects for Data Centers

Author: Tolga Tekin
Publisher: Woodhead Publishing
ISBN: 008100513X
Format: PDF, ePub
Download Now
Current data centre networks, based on electronic packet switches, are experiencing an exponential increase in network traffic due to developments such as cloud computing. Optical interconnects have emerged as a promising alternative offering high throughput and reduced power consumption. Optical Interconnects for Data Centers reviews key developments in the use of optical interconnects in data centres and the current state of the art in transforming this technology into a reality. The book discusses developments in optical materials and components (such as single and multi-mode waveguides), circuit boards and ways the technology can be deployed in data centres. Optical Interconnects for Data Centers is a key reference text for electronics designers, optical engineers, communications engineers and R&D managers working in the communications and electronics industries as well as postgraduate researchers. Summarizes the state-of-the-art in this emerging field Presents a comprehensive review of all the key aspects of deploying optical interconnects in data centers, from materials and components, to circuit boards and methods for integration Contains contributions that are drawn from leading international experts on the topic

Physical Properties and Applications of Polymer Nanocomposites

Author: S C Tjong
Publisher: Elsevier
ISBN: 0857090240
Format: PDF, ePub
Download Now
Polymer nanocomposites are polymer matrices reinforced with nano-scale fillers. This new class of composite materials has shown improved mechanical and physical properties. The latter include enhanced optical, electrical and dielectric properties. This important book begins by examining the characteristics of the main types of polymer nanocomposites, then reviews their diverse applications. Part one focuses on polymer/nanoparticle composites, their synthesis, optical properties and electrical conductivity. Part two describes the electrical, dielectric and thermal behaviour of polymer/nanoplatelet composites, whilst polymer/nanotube composites are the subject of Part three. The processing and industrial applications of these nanocomposite materials are discussed in Part four, including uses in fuel cells, bioimaging and sensors as well as the manufacture and applications of electrospun polymer nanocomposite fibers, nanostructured transition metal oxides, clay nanofiller/epoxy nanocomposites, hybrid epoxy-silica-rubber nanocomposites and other rubber-based nanocomposites. Polymer nanocomposites: Physical properties and applications is a valuable reference tool for both the research community and industry professionals wanting to learn about the these materials and their applications in such areas as fuel cell, sensor and biomedical technology. Examines the characteristics of the main types of polymer nanocomposites and reviews their diverse applications Comprehensively assesses polymer/nanoparticle composites exploring experimental techniques and data associated with the conductivity and dielectric characterization A specific section on polymer/nanotube composites features electrical and dielectric behaviour of polymer/carbon nanotube composites

Multidisciplinary Know How for Smart Textiles Developers

Author: Tünde Kirstein
Publisher: Elsevier
ISBN: 0857093533
Format: PDF, Docs
Download Now
Smart-textiles developers draw on diverse fields of knowledge to produce unique materials with enhanced properties and vast potential. Several disciplines outside the traditional textile area are involved in the construction of these smart textiles, and each individual field has its own language, specific terms and approaches. Multidisciplinary know-how for smart-textiles developers provides a filtered knowledge of these areas of expertise, explaining key expressions and demonstrating their relevance to the smart-textiles field. Following an introduction to the new enabling technologies, commercialisation and market trends that make up the future of smart-textiles development, part one reviews materials employed in the production of smart textiles. Types and processing of electro-conductive and semiconducting materials, optical fibres for smart photonic textiles, conductive nanofibres and nanocoatings, polymer-based resistive sensors, and soft capacitance fibres for touch-sensitive smart textiles are all discussed. Part two then investigates such technologies as the embedding of electronic functions, the integration of thin-film electronics, and the development of organic and large-area electronic (OLAE) technologies for smart textiles. Joining technologies are also discussed, alongside kinetic, thermoelectric and solar energy harvesting technologies, and signal processing technologies for activity-aware smart textiles. Finally, product development and applications are the focus of part three, which investigates strategies for technology management, innovation and improved sustainability, before the book concludes by exploring medical, automotive and architectural applications of smart textiles. With its distinguished editor and international team of expert contributors, Multidisciplinary know-how for smart-textiles developers is a key tool for readers working in industries including design, fashion, textiles, through to electronics, computing and material science. It also provides a useful guide to the subject for academics working across a wide range of fields. Reviews materials used in the production of smart textiles Examines the technologies used in smart textiles, such as optical fibres and polymer based resistive sensors Investigates strategies for technology management, innovation and improved development

Laser Surface Engineering

Author: Jonathan R. Lawrence
Publisher: Elsevier
ISBN: 1782420797
Format: PDF, Mobi
Download Now
Lasers can alter the surface composition and properties of materials in a highly controllable way, which makes them efficient and cost-effective tools for surface engineering. This book provides an overview of the different techniques, the laser-material interactions and the advantages and disadvantages for different applications. Part one looks at laser heat treatment, part two covers laser additive manufacturing such as laser-enhanced electroplating, and part three discusses laser micromachining, structuring and surface modification. Chemical and biological applications of laser surface engineering are explored in part four, including ways to improve the surface corrosion properties of metals. Provides an overview of thermal surface treatments using lasers, including the treatment of steels, light metal alloys, polycrystalline silicon and technical ceramics Addresses the development of new metallic materials, innovations in laser cladding and direct metal deposition, and the fabrication of tuneable micro- and nano-scale surface structures Chapters also cover laser structuring, surface modification, and the chemical and biological applications of laser surface engineering

Chalcogenide Glasses

Author: J-L Adam
Publisher: Woodhead Publishing
ISBN: 0857093568
Format: PDF
Download Now
The unique properties and functionalities of chalcogenide glasses make them promising materials for photonic applications. Chalcogenide glasses are transparent from the visible to the near infrared region and can be moulded into lenses or drawn into fibres. They have useful commercial applications as components for lenses for infrared cameras, and chalcogenide glass fibres and optical components are used in waveguides for use with lasers, for optical switching, chemical and temperature sensing and phase change memories. Chalcogenide glasses comprehensively reviews the latest technological advances in this field and the industrial applications of the technology. Part one outlines the preparation methods and properties of chalcogenide glasses, including the thermal properties, structure, and optical properties, before going on to discuss mean coordination and topological constraints in chalcogenide network glasses, and the photo-induced phenomena in chalcogenide glasses. This section also covers the ionic conductivity and physical aging of chalcogenide glasses, deposition techniques for chalcogenide thin films, and transparent chalcogenide glass-ceramics. Part two explores the applications of chalcogenide glasses. Topics discussed include rare-earth-doped chalcogenide glass for lasers and amplifiers, the applications of chalcogenide glasses for infrared sensing, microstructured optical fibres for infrared applications, and chalcogenide glass waveguide devices for all-optical signal processing. This section also discusses the control of light on the nanoscale with chalcogenide thin films, chalcogenide glass resists for lithography, and chalcogenide for phase change optical and electrical memories. The book concludes with an overview of chalcogenide glasses as electrolytes for batteries. Chalcogenide glasses comprehensively reviews the latest technological advances and applications of chalcogenide glasses, and is an essential text for academics, materials scientists and electrical engineers working in the photonics and optoelectronics industry. Outlines preparation methods and properties, and explores applications of chalcogenide glasses. Covers the ionic conductivity and physical aging of chalcogenide glasses, deposition techniques for chalcogenide thin films, and transparent chalcogenide glass-ceramics Discusses the control of light on the nanoscale with chalcogenide thin films, chalcogenide glass resists for lithography, and chalcogenide for phase change optical and electrical memories

Biodegradable and Biocompatible Polymer Composites

Author: Navinchandra Gopal Shimpi
Publisher: Woodhead Publishing
ISBN: 0081010583
Format: PDF, Mobi
Download Now
Biodegradable and Biocompatible Polymer Composites: Processing, Properties and Applications begins by discussing the current state-of-the-art, new challenges and opportunities for various biodegradable and biocompatible polymer composite systems. Interfacial characterization of composites and the structure-property relationships in various composite systems are explained in detail via a theoretical model. Processing techniques for various macro and nanocomposite systems and the influence of processing parameters on properties of the composite are also reviewed in detail. The characterization of microstructure, elastic, visco-elastic, static and dynamic mechanical, thermal, rheological, optical, and electrical properties are highlighted, as are a broad range of applications. The book is a useful reference resource for both researchers and engineers working in composites materials science, biotechnology and nanotechnology, and is also useful for students attending chemistry, physics, and materials science and engineering courses. Presents recent outcomes and highlights the going importance of biodegradable and biocompatible polymer composites and their impact on the environment Analyzes all the main processing techniques, characterization and applications of biodegradable composites Written by leading international experts working in the field of biodegradable and biocompatible polymer composites Covers a broad range of application fields, including medical and pharmaceutical, agricultural, packaging and transport

Cellulose Reinforced Nanofibre Composites

Author: Mohammad Jawaid
Publisher: Woodhead Publishing
ISBN: 0081009658
Format: PDF, Kindle
Download Now
Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications presents recent developments in, and applications of, nanocellulose as reinforcement in composite and nanocomposite materials. Written by leading experts, the book covers properties and applications of nanocellulose, including the production of nanocellulose from different biomass resources, the usefulness of nanocellulose as a reinforcement for polymer and paper, and major challenges for successful scale-up production in the future. The chapters draw on cutting-edge research on the use of nanosized cellulose reinforcements in polymer composites that result in advanced material characteristics and significant enhancements in physical, mechanical and thermal properties. The book presents an up-to-date review of the major innovations in the field of nanocellulose and provides a reference material for future research in biomass based composite materials, which is timely due to the sustainable, recyclable and eco-friendly demand for highly innovative materials made from biomass. This book is an ideal source of information for scientific and industrial researchers working in materials science. Gathers together a broad spectrum of research on nanocellulose, with emphasis on the outstanding reinforcing potential when nanocellulose is included into a polymer matrix or as an additive to paper Demonstrates systematic approaches and investigations from processing, design, characterization and applications of nanocellulose Presents a useful reference and technical guide for nanocomposite materials R&D sectors, university academics and postgraduate students (Masters and PhD) and industrialists working in material commercialization

Advances in Smart Medical Textiles

Author: Lieva van Langenhove
Publisher: Woodhead Publishing
ISBN: 1782424008
Format: PDF, Kindle
Download Now
Advances in Smart Medical Textiles: Treatments and Health Monitoring provides comprehensive coverage on smart textiles, the emerging and important materials that are finding applications in the fields of medicine and healthcare. The book explores the range of smart textiles available for use in medicine and the transfer of these innovative technologies into medical applications. Early chapters survey various smart fibers, fabrics, and finishes, while subsequent sections focus on the role of smart textiles in treating patients, from wound care to rehabilitation, and the use of textile-based sensors and wearable electronics for monitoring patient health. Provides a comprehensive review of the materials used in smart medical textiles Analyzes the application of these textiles in medical treatments and sensors for health monitoring Covers the range of international research in the field and keeps focus on the needs of the textile industry

Multidisciplinary Know How for Smart Textiles Developers

Author: Tünde Kirstein
Publisher: Elsevier
ISBN: 0857093533
Format: PDF, Mobi
Download Now
Smart-textiles developers draw on diverse fields of knowledge to produce unique materials with enhanced properties and vast potential. Several disciplines outside the traditional textile area are involved in the construction of these smart textiles, and each individual field has its own language, specific terms and approaches. Multidisciplinary know-how for smart-textiles developers provides a filtered knowledge of these areas of expertise, explaining key expressions and demonstrating their relevance to the smart-textiles field. Following an introduction to the new enabling technologies, commercialisation and market trends that make up the future of smart-textiles development, part one reviews materials employed in the production of smart textiles. Types and processing of electro-conductive and semiconducting materials, optical fibres for smart photonic textiles, conductive nanofibres and nanocoatings, polymer-based resistive sensors, and soft capacitance fibres for touch-sensitive smart textiles are all discussed. Part two then investigates such technologies as the embedding of electronic functions, the integration of thin-film electronics, and the development of organic and large-area electronic (OLAE) technologies for smart textiles. Joining technologies are also discussed, alongside kinetic, thermoelectric and solar energy harvesting technologies, and signal processing technologies for activity-aware smart textiles. Finally, product development and applications are the focus of part three, which investigates strategies for technology management, innovation and improved sustainability, before the book concludes by exploring medical, automotive and architectural applications of smart textiles. With its distinguished editor and international team of expert contributors, Multidisciplinary know-how for smart-textiles developers is a key tool for readers working in industries including design, fashion, textiles, through to electronics, computing and material science. It also provides a useful guide to the subject for academics working across a wide range of fields. Reviews materials used in the production of smart textiles Examines the technologies used in smart textiles, such as optical fibres and polymer based resistive sensors Investigates strategies for technology management, innovation and improved development