Potential Theory

Author: Lester L. Helms
Publisher: Springer Science & Business Media
ISBN: 1447164229
Format: PDF, Docs
Download Now
Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem, the author develops methods for constructing solutions of Laplace's equation on a region with prescribed values on the boundary of the region. The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion. In this new edition, many exercises have been added to reconnect the subject matter to the physical sciences. This book will undoubtedly be useful to graduate students and researchers in mathematics, physics and engineering.

Potential Theory

Author: Lester L. Helms
Publisher: Springer Science & Business Media
ISBN: 9781848823198
Format: PDF, Mobi
Download Now
The ?rst six chapters of this book are revised versions of the same chapters in the author’s 1969 book, Introduction to Potential Theory. Atthetimeof the writing of that book, I had access to excellent articles,books, and lecture notes by M. Brelot. The clarity of these works made the task of collating them into a single body much easier. Unfortunately, there is not a similar collection relevant to more recent developments in potential theory. A n- comer to the subject will ?nd the journal literature to be a maze of excellent papers and papers that never should have been published as presented. In the Opinion Column of the August, 2008, issue of the Notices of the Am- ican Mathematical Society, M. Nathanson of Lehman College (CUNY) and (CUNY) Graduate Center said it best “. . . When I read a journal article, I often ?nd mistakes. Whether I can ?x them is irrelevant. The literature is unreliable. ” From time to time, someone must try to ?nd a path through the maze. In planning this book, it became apparent that a de?ciency in the 1969 book would have to be corrected to include a discussion of the Neumann problem, not only in preparation for a discussion of the oblique derivative boundary value problem but also to improve the basic part of the subject matter for the end users, engineers, physicists, etc.

Complex Manifolds without Potential Theory

Author: Shiing-shen Chern
Publisher: Springer Science & Business Media
ISBN: 1468493442
Format: PDF, ePub, Mobi
Download Now
From the reviews of the second edition: "The new methods of complex manifold theory are very useful tools for investigations in algebraic geometry, complex function theory, differential operators and so on. The differential geometrical methods of this theory were developed essentially under the influence of Professor S.-S. Chern's works. The present book is a second edition... It can serve as an introduction to, and a survey of, this theory and is based on the author's lectures held at the University of California and at a summer seminar of the Canadian Mathematical Congress.... The text is illustrated by many examples... The book is warmly recommended to everyone interested in complex differential geometry." #Acta Scientiarum Mathematicarum, 41, 3-4#

Classical Potential Theory and Its Probabilistic Counterpart

Author: Joseph L. Doob
Publisher: Springer Science & Business Media
ISBN: 9783540412069
Format: PDF, Kindle
Download Now
From the reviews: "This huge book written in several years by one of the few mathematicians able to do it, appears as a precise and impressive study (not very easy to read) of this bothsided question that replaces, in a coherent way, without being encyclopaedic, a large library of books and papers scattered without a uniform language. Instead of summarizing the author gives his own way of exposition with original complements. This requires no preliminary knowledge. ...The purpose which the author explains in his introduction, i.e. a deep probabilistic interpretation of potential theory and a link between two great theories, appears fulfilled in a masterly manner". M. Brelot in Metrika (1986)

Potential Theory

Author: Lester L. Helms
Publisher: Springer Science & Business Media
ISBN: 1447164229
Format: PDF, Mobi
Download Now
Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem, the author develops methods for constructing solutions of Laplace's equation on a region with prescribed values on the boundary of the region. The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion. In this new edition, many exercises have been added to reconnect the subject matter to the physical sciences. This book will undoubtedly be useful to graduate students and researchers in mathematics, physics and engineering.

Potential Theory

Author: Jürgen Bliedtner
Publisher: Springer Science & Business Media
ISBN: 3642711316
Format: PDF, Docs
Download Now
During the last thirty years potential theory has undergone a rapid development, much of which can still only be found in the original papers. This book deals with one part of this development, and has two aims. The first is to give a comprehensive account of the close connection between analytic and probabilistic potential theory with the notion of a balayage space appearing as a natural link. The second aim is to demonstrate the fundamental importance of this concept by using it to give a straight presentation of balayage theory which in turn is then applied to the Dirichlet problem. We have considered it to be beyond the scope of this book to treat further topics such as duality, ideal boundary and integral representation, energy and Dirichlet forms. The subject matter of this book originates in the relation between classical potential theory and the theory of Brownian motion. Both theories are linked with the Laplace operator. However, the deep connection between these two theories was first revealed in the papers of S. KAKUTANI [1], [2], [3], M. KAC [1] and J. L. DO DB [2] during the period 1944-54: This can be expressed by the·fact that the harmonic measures which occur in the solution of the Dirichlet problem are hitting distri butions for Brownian motion or, equivalently, that the positive hyperharmonic func tions for the Laplace equation are the excessive functions of the Brownian semi group.

Potential Theory Surveys and Problems

Author: Josef Kral
Publisher: Springer
ISBN: 3540459529
Format: PDF, ePub, Docs
Download Now
The volume comprises eleven survey papers based on survey lectures delivered at the Conference in Prague in July 1987, which covered various facets of potential theory, including its applications in other areas. The survey papers deal with both classical and abstract potential theory and its relations to partial differential equations, stochastic processes and other branches such as numerical analysis and topology. A collection of problems from potential theory, compiled on the occasion of the conference, is included, with additional commentaries, in the second part of this volume.

Partial Differential Equations 1

Author: Friedrich Sauvigny
Publisher: Springer Science & Business Media
ISBN: 1447129814
Format: PDF, ePub, Mobi
Download Now
This two-volume textbook provides comprehensive coverage of partial differential equations, spanning elliptic, parabolic, and hyperbolic types in two and several variables. In this first volume, special emphasis is placed on geometric and complex variable methods involving integral representations. The following topics are treated: • integration and differentiation on manifolds • foundations of functional analysis • Brouwer's mapping degree • generalized analytic functions • potential theory and spherical harmonics • linear partial differential equations This new second edition of this volume has been thoroughly revised and a new section on the boundary behavior of Cauchy’s integral has been added. The second volume will present functional analytic methods and applications to problems in differential geometry. This textbook will be of particular use to graduate and postgraduate students interested in this field and will be of interest to advanced undergraduate students. It may also be used for independent study.