Predictive Modular Neural Networks

Author: Vassilios Petridis
Publisher: Springer Science & Business Media
ISBN: 1461555558
Format: PDF
Download Now
The subject of this book is predictive modular neural networks and their ap plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several "subnetworks" (modules), which may perform the same or re lated tasks, and then use an "appropriate" method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of "lumped" or "monolithic" networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network.

Recent Developments and the New Direction in Soft Computing Foundations and Applications

Author: Lotfi A. Zadeh
Publisher: Springer
ISBN: 3319754084
Format: PDF, Docs
Download Now
This book is an authoritative collection of contributions in the field of soft-computing. Based on selected works presented at the 6th World Conference on Soft Computing, held on May 22-25, 2016, in Berkeley, USA, it describes new theoretical advances, as well as cutting-edge methods and applications. Theories cover a wealth of topics, such as fuzzy logic, cognitive modeling, Bayesian and probabilistic methods, multi-criteria decision making, utility theory, approximate reasoning, human-centric computing and many others. Applications concerns a number of fields, such as internet and semantic web, social networks and trust, control and robotics, computer vision, medicine and bioinformatics, as well as finance, security and e-Commerce, among others. Dedicated to the 50th Anniversary of Fuzzy Logic and to the 95th Birthday Anniversary of Lotfi A. Zadeh, the book not only offers a timely view on the field, yet it also discusses thought-provoking developments and challenges, thus fostering new research directions in the diverse areas of soft computing.

Nature Inspired Design of Hybrid Intelligent Systems

Author: Patricia Melin
Publisher: Springer
ISBN: 331947054X
Format: PDF, Mobi
Download Now
This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as time series prediction and pattern recognition. The sixth part examines new optimization algorithms and their applications. Lastly, the seventh part is dedicated to the design and application of different hybrid intelligent systems.

Advances in Data Analysis with Computational Intelligence Methods

Author: Adam E Gawęda
Publisher: Springer
ISBN: 3319679465
Format: PDF, Mobi
Download Now
This book is a tribute to Professor Jacek Żurada, who is best known for his contributions to computational intelligence and knowledge-based neurocomputing. It is dedicated to Professor Jacek Żurada, Full Professor at the Computational Intelligence Laboratory, Department of Electrical and Computer Engineering, J.B. Speed School of Engineering, University of Louisville, Kentucky, USA, as a token of appreciation for his scientific and scholarly achievements, and for his longstanding service to many communities, notably the computational intelligence community, in particular neural networks, machine learning, data analyses and data mining, but also the fuzzy logic and evolutionary computation communities, to name but a few. At the same time, the book recognizes and honors Professor Żurada’s dedication and service to many scientific, scholarly and professional societies, especially the IEEE (Institute of Electrical and Electronics Engineers), the world’s largest professional technical professional organization dedicated to advancing science and technology in a broad spectrum of areas and fields. The volume is divided into five major parts, the first of which addresses theoretic, algorithmic and implementation problems related to the intelligent use of data in the sense of how to derive practically useful information and knowledge from data. In turn, Part 2 is devoted to various aspects of neural networks and connectionist systems. Part 3 deals with essential tools and techniques for intelligent technologies in systems modeling and Part 4 focuses on intelligent technologies in decision-making, optimization and control, while Part 5 explores the applications of intelligent technologies.

Artificial Neural Networks ICANN 2008

Author: Roman Neruda
Publisher: Springer Science & Business Media
ISBN: 3540875352
Format: PDF, Kindle
Download Now
This two volume set LNCS 5163 and LNCS 5164 constitutes the refereed proceedings of the 18th International Conference on Artificial Neural Networks, ICANN 2008, held in Prague Czech Republic, in September 2008. The 200 revised full papers presented were carefully reviewed and selected from more than 300 submissions. The first volume contains papers on mathematical theory of neurocomputing, learning algorithms, kernel methods, statistical learning and ensemble techniques, support vector machines, reinforcement learning, evolutionary computing, hybrid systems, self-organization, control and robotics, signal and time series processing and image processing.

Bio Inspired Applications of Connectionism

Author: Jose Mira
Publisher: Springer Science & Business Media
ISBN: 3540422374
Format: PDF, ePub, Docs
Download Now
This book constitutes, together with its companion LNCS 2084, the refereed proceedings of the 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001, held in Granada, Spain in June 2001. The 200 revised papers presented were carefully reviewed and selected for inclusion in the proceedings. The papers are organized in sections on foundations of connectionism, biophysical models of neurons, structural and functional models of neurons, learning and other plasticity phenomena, complex systems dynamics, artificial intelligence and cognitive processes, methodology for nets design, nets simulation and implementation, bio-inspired systems and engineering, and other applications in a variety of fields.

Recent Advances on Hybrid Approaches for Designing Intelligent Systems

Author: Oscar Castillo
Publisher: Springer
ISBN: 3319051709
Format: PDF, Kindle
Download Now
This book describes recent advances on hybrid intelligent systems using soft computing techniques for diverse areas of application, such as intelligent control and robotics, pattern recognition, time series prediction and optimization complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of type-2 fuzzy logic, which basically consists of papers that propose new models and applications for type-2 fuzzy systems. The second part contains papers with the main theme of bio-inspired optimization algorithms, which are basically papers using nature-inspired techniques to achieve optimization of complex optimization problems in diverse areas of application. The third part contains papers that deal with new models and applications of neural networks in real world problems. The fourth part contains papers with the theme of intelligent optimization methods, which basically consider the proposal of new methods of optimization to solve complex real world optimization problems. The fifth part contains papers with the theme of evolutionary methods and intelligent computing, which are papers considering soft computing methods for applications related to diverse areas, such as natural language processing, recommending systems and optimization.