Principles of Linear Algebra with Mathematica

Author: Kenneth M. Shiskowski
Publisher: John Wiley & Sons
ISBN: 1118627261
Format: PDF, Kindle
Download Now
A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings, and the commands required to solve complex and computationally challenging problems using Mathematica are provided. The book begins with an introduction to the commands and programming guidelines for working with Mathematica. Next, the authors explore linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer's rule. Basic linear algebra topics, such as vectors, dot product, cross product, and vector projection are explored, as well as a unique variety of more advanced topics including rotations in space, 'rolling' a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, with an exploration of their effect on arclength, area, and volume, least squares fits, and pseudoinverses. Mathematica is used to enhance concepts and is seamlessly integrated throughout the book through symbolic manipulations, numerical computations, graphics in two and three dimensions, animations, and programming. Each section concludes with standard problems in addition to problems that were specifically designed to be solved with Mathematica, allowing readers to test their comprehension of the presented material. All related Mathematica code is available on a corresponding website, along with solutions to problems and additional topical resources. Extensively class-tested to ensure an accessible presentation, Principles of Linear Algebra with Mathematica is an excellent book for courses on linear algebra at the undergraduate level. The book is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Mathematica to solve linear algebra problems.

The Mathematics of Infinity

Author: Theodore G. Faticoni
Publisher: John Wiley & Sons
ISBN: 1118204484
Format: PDF, ePub
Download Now
"Writing with clear knowledge and affection for the subject, the author introduces and explores infinite sets, infinite cardinals, and ordinals, thus challenging the readers' intuitive beliefs about infinity. Requiring little mathematical training and a healthy curiosity, the book presents a user-friendly approach to ideas involving the infinite. Readers will discover the main ideas of infinite cardinals and ordinal numbers without experiencing in-depth mathematical rigor. Classic arguments and illustrative examples are provided throughout the book and are accompanied by a gradual progression of sophisticated notions designed to stun your intuitive view of the world. Infinity, we are told, is as large as things get. This is not entirely true. This book does not refer to infinities, but rather to cardinals. This is to emphasize the point that what you thought you knew about infinity is probably incorrect or imprecise. Since the reader is assumed to be educated in mathematics, but not necessarily mathematically trained, an attempt has been made to convince the reader of the truth of a matter without resorting to the type of rigor found in professional journals. Therefore, the author has accompanied the proofs with illustrative examples. The examples are often a part of a larger proof. Important facts are included and their proofs have been excluded if the author has determined that the proof is beyond the scope of the discussion. For example, it is assumed and not proven within the book that a collection of cardinals is larger than any set or mathematical object. The topics covered within the book cannot be found within any other one book on infinity, and the work succeeds in being the only book on infinite cardinals for the high school educated person. Topical coverage includes: logic and sets; functions; counting infinite sets; infinite cardinals; well ordered sets; inductions and numbers; prime numbers; and logic and meta-mathematics. "--

Fundamentals of matrix computations

Author: David S. Watkins
Publisher: John Wiley & Sons Inc
ISBN: 9780471614142
Format: PDF
Download Now
With in-depth discussions of such other topics as modern componentwise error analysis, reorthogonalization, and rank-one updates of the QR decomposition, Fundamentals of Matrix Computations, Second Edition will prove to be a versatile companion to novice and practicing mathematicians who seek mastery of matrix computation.

Numerical Solution of Ordinary Differential Equations

Author: Kendall Atkinson
Publisher: John Wiley & Sons
ISBN: 1118164520
Format: PDF, ePub
Download Now
A concise introduction to numerical methodsand the mathematical framework neededto understand their performance Numerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' collective academic experience ensures a coherent and accessible discussion of key topics, including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB® programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics. Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper-undergraduate and beginning graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.

Glimpses of Soliton Theory

Author: Alex Kasman
Publisher: American Mathematical Soc.
ISBN: 0821852450
Format: PDF, Docs
Download Now
Solitons are explicit solutions to nonlinear partial differential equations exhibiting particle-like behavior. This is quite surprising, both mathematically and physically. Waves with these properties were once believed to be impossible by leading mathematical physicists, yet they are now not only accepted as a theoretical possibility but are regularly observed in nature and form the basis of modern fiber-optic communication networks. Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. Assuming only multivariable calculus and linear algebra as prerequisites, this book introduces the reader to the KdV Equation and its multisoliton solutions, elliptic curves and Weierstrass -functions, the algebra of differential operators, Lax Pairs and their use in discovering other soliton equations, wedge products and decomposability, the KP Equation and Sato's theory relating the Bilinear KP Equation to the geometry of Grassmannians. Notable features of the book include: careful selection of topics and detailed explanations to make this advanced subject accessible to any undergraduate math major, numerous worked examples and thought-provoking but not overly-difficult exercises, footnotes and lists of suggested readings to guide the interested reader to more information, and use of the software package Mathematica« to facilitate computation and to animate the solutions under study. This book provides the reader with a unique glimpse of the unity of mathematics and could form the basis for a self-study, one-semester special topics, or "capstone" course.

Differential Equations

Author: Paul Blanchard
Publisher: Cengage Learning
ISBN: 1133388086
Format: PDF, ePub
Download Now
Incorporating an innovative modeling approach, this book for a one-semester differential equations course emphasizes conceptual understanding to help users relate information taught in the classroom to real-world experiences. Certain models reappear throughout the book as running themes to synthesize different concepts from multiple angles, and a dynamical systems focus emphasizes predicting the long-term behavior of these recurring models. Users will discover how to identify and harness the mathematics they will use in their careers, and apply it effectively outside the classroom. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Primes of the Form x2 ny2

Author: David A. Cox
Publisher: Wiley
ISBN: 9781118390184
Format: PDF, ePub, Mobi
Download Now
An exciting approach to the history and mathematics of number theory “. . . the author’s style is totally lucid and very easy to read . . .the result is indeed a wonderful story.” —Mathematical Reviews Written in a unique and accessible style for readers of varied mathematical backgrounds, the Second Edition of Primes of the Form p = x2+ ny2 details the history behind how Pierre de Fermat’s work ultimately gave birth to quadratic reciprocity and the genus theory of quadratic forms. The book also illustrates how results of Euler and Gauss can be fully understood only in the context of class field theory, and in addition, explores a selection of the magnificent formulas of complex multiplication. Primes of the Form p = x2 + ny2, Second Edition focuses on addressing the question of when a prime p is of the form x2 + ny2, which serves as the basis for further discussion of various mathematical topics. This updated edition has several new notable features, including: • A well-motivated introduction to the classical formulation of class field theory • Illustrations of explicit numerical examples to demonstrate the power of basic theorems in various situations • An elementary treatment of quadratic forms and genus theory • Simultaneous treatment of elementary and advanced aspects of number theory • New coverage of the Shimura reciprocity law and a selection of recent work in an updated bibliography Primes of the Form p = x2 + ny2, Second Edition is both a useful reference for number theory theorists and an excellent text for undergraduate and graduate-level courses in number and Galois theory.