Principles of Quantum Computation and Information

Author: Giuliano Benenti
Publisher: World Scientific
ISBN: 9789812388582
Format: PDF, ePub
Download Now
Quantum computation and information is a new, rapidly developing interdisciplinary field. This book provides the reader a useful and not-too-heavy guide. It offers a simple and self-contained introduction; no previous knowledge of quantum mechanics or classical computation is required. Volume 1 may be used as a textbook for a one-semester introductory course in quantum information and computation, both for upper-level undergraduate students and for graduate students. It contains a large number of solved exercises, which are an essential complement to the text, as they will help the student to become familiar with the subject.

Principles of Quantum Computation and Information Basic tools and special topics

Author: Giuliano Benenti
Publisher: World Scientific
ISBN: 9812563458
Format: PDF, Mobi
Download Now
"Quantum computation and information is a new, rapidly developing interdisciplinary field. Therefore, it is not easy to understand its fundamental concepts and central results without facing numerous technical details. This book provides the reader a useful and not-too-heavy guide. It offers a simple and self-contained introduction; no previous knowledge of quantum mechanics or classical computation is required.

Quantum Computation and Quantum Information

Author: Michael A. Nielsen
Publisher: Cambridge University Press
ISBN: 1139495488
Format: PDF, Kindle
Download Now
One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.

The Theory of Quantum Information

Author: John Watrous
Publisher:
ISBN: 1107180562
Format: PDF, Mobi
Download Now
Formal development of the mathematical theory of quantum information with clear proofs and exercises. For graduate students and researchers.

Introduction to Topological Quantum Computation

Author: Jiannis K. Pachos
Publisher: Cambridge University Press
ISBN: 1139936689
Format: PDF, Mobi
Download Now
Combining physics, mathematics and computer science, topological quantum computation is a rapidly expanding research area focused on the exploration of quantum evolutions that are immune to errors. In this book, the author presents a variety of different topics developed together for the first time, forming an excellent introduction to topological quantum computation. The makings of anyonic systems, their properties and their computational power are presented in a pedagogical way. Relevant calculations are fully explained, and numerous worked examples and exercises support and aid understanding. Special emphasis is given to the motivation and physical intuition behind every mathematical concept. Demystifying difficult topics by using accessible language, this book has broad appeal and is ideal for graduate students and researchers from various disciplines who want to get into this new and exciting research field.

Principles of Quantum Computation and Information Basic tools and special topics

Author: Giuliano Benenti
Publisher: World Scientific
ISBN: 9812563458
Format: PDF, Mobi
Download Now
"Quantum computation and information is a new, rapidly developing interdisciplinary field. Therefore, it is not easy to understand its fundamental concepts and central results without facing numerous technical details. This book provides the reader a useful and not-too-heavy guide. It offers a simple and self-contained introduction; no previous knowledge of quantum mechanics or classical computation is required.

Quantum Information Processing and Quantum Error Correction

Author: Ivan Djordjevic
Publisher: Academic Press
ISBN: 012385492X
Format: PDF, ePub
Download Now
Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction – everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

Quantum Computing Since Democritus

Author: Scott Aaronson
Publisher: Cambridge University Press
ISBN: 0521199565
Format: PDF, ePub
Download Now
Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics.

Principles of Quantum Artificial Intelligence

Author: Andreas Wichert
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9789814566742
Format: PDF, ePub, Mobi
Download Now
In this book, we introduce quantum computation and its application to AI. We highlight problem solving and knowledge representation framework. Based on information theory, we cover two main principles of quantum computation — Quantum Fourier transform and Grover search. Then, we indicate how these two principles can be applied to problem solving and finally present a general model of a quantum computer that is based on production systems.