Principles of Uncertainty

Author: Joseph B. Kadane
Publisher: CRC Press
ISBN: 1439861617
Format: PDF, ePub, Docs
Download Now
An intuitive and mathematical introduction to subjective probability and Bayesian statistics. An accessible, comprehensive guide to the theory of Bayesian statistics, Principles of Uncertainty presents the subjective Bayesian approach, which has played a pivotal role in game theory, economics, and the recent boom in Markov Chain Monte Carlo methods. Both rigorous and friendly, the book contains: Introductory chapters examining each new concept or assumption Just-in-time mathematics – the presentation of ideas just before they are applied Summary and exercises at the end of each chapter Discussion of maximization of expected utility The basics of Markov Chain Monte Carlo computing techniques Problems involving more than one decision-maker Written in an appealing, inviting style, and packed with interesting examples, Principles of Uncertainty introduces the most compelling parts of mathematics, computing, and philosophy as they bear on statistics. Although many books present the computation of a variety of statistics and algorithms while barely skimming the philosophical ramifications of subjective probability, this book takes a different tack. By addressing how to think about uncertainty, this book gives readers the intuition and understanding required to choose a particular method for a particular purpose.

Topics on Methodological and Applied Statistical Inference

Author: Tonio Di Battista
Publisher: Springer
ISBN: 3319440934
Format: PDF, Docs
Download Now
This book brings together selected peer-reviewed contributions from various research fields in statistics, and highlights the diverse approaches and analyses related to real-life phenomena. Major topics covered in this volume include, but are not limited to, bayesian inference, likelihood approach, pseudo-likelihoods, regression, time series, and data analysis as well as applications in the life and social sciences. The software packages used in the papers are made available by the authors. This book is a result of the 47th Scientific Meeting of the Italian Statistical Society, held at the University of Cagliari, Italy, in 2014.

Introduction to Hierarchical Bayesian Modeling for Ecological Data

Author: Eric Parent
Publisher: CRC Press
ISBN: 1584889209
Format: PDF, ePub, Mobi
Download Now
Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts and techniques of the Bayesian paradigm from a practical point of view using real case studies. They emphasize how hierarchical Bayesian modeling supports multidimensional models involving complex interactions between parameters and latent variables. Data sets, exercises, and R and WinBUGS codes are available on the authors’ website. This book shows how Bayesian statistical modeling provides an intuitive way to organize data, test ideas, investigate competing hypotheses, and assess degrees of confidence of predictions. It also illustrates how conditional reasoning can dismantle a complex reality into more understandable pieces. As conditional reasoning is intimately linked with Bayesian thinking, considering hierarchical models within the Bayesian setting offers a unified and coherent framework for modeling, estimation, and prediction.

Pragmatics of Uncertainty

Author: Joseph B. Kadane
Publisher: CRC Press
ISBN: 1315353814
Format: PDF, Mobi
Download Now
A fair question to ask of an advocate of subjective Bayesianism (which the author is) is "how would you model uncertainty?" In this book, the author writes about how he has done it using real problems from the past, and offers additional comments about the context in which he was working.

Linear Models with R Second Edition

Author: Julian J. Faraway
Publisher: CRC Press
ISBN: 1439887330
Format: PDF, Kindle
Download Now
A Hands-On Way to Learning Data Analysis Part of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition. New to the Second Edition Reorganized material on interpreting linear models, which distinguishes the main applications of prediction and explanation and introduces elementary notions of causality Additional topics, including QR decomposition, splines, additive models, Lasso, multiple imputation, and false discovery rates Extensive use of the ggplot2 graphics package in addition to base graphics Like its widely praised, best-selling predecessor, this edition combines statistics and R to seamlessly give a coherent exposition of the practice of linear modeling. The text offers up-to-date insight on essential data analysis topics, from estimation, inference, and prediction to missing data, factorial models, and block designs. Numerous examples illustrate how to apply the different methods using R.

Flexible Imputation of Missing Data

Author: Stef van Buuren
Publisher: CRC Press
ISBN: 1439868255
Format: PDF, ePub, Docs
Download Now
Missing data form a problem in every scientific discipline, yet the techniques required to handle them are complicated and often lacking. One of the great ideas in statistical science—multiple imputation—fills gaps in the data with plausible values, the uncertainty of which is coded in the data itself. It also solves other problems, many of which are missing data problems in disguise. Flexible Imputation of Missing Data is supported by many examples using real data taken from the author's vast experience of collaborative research, and presents a practical guide for handling missing data under the framework of multiple imputation. Furthermore, detailed guidance of implementation in R using the author’s package MICE is included throughout the book. Assuming familiarity with basic statistical concepts and multivariate methods, Flexible Imputation of Missing Data is intended for two audiences: (Bio)statisticians, epidemiologists, and methodologists in the social and health sciences Substantive researchers who do not call themselves statisticians, but who possess the necessary skills to understand the principles and to follow the recipes This graduate-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by a verbal statement that explains the formula in layperson terms. Readers less concerned with the theoretical underpinnings will be able to pick up the general idea, and technical material is available for those who desire deeper understanding. The analyses can be replicated in R using a dedicated package developed by the author.

Bayesian Programming

Author: Pierre Bessiere
Publisher: CRC Press
ISBN: 1439880336
Format: PDF, Docs
Download Now
Probability as an Alternative to Boolean Logic While logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data. Decision-Making Tools and Methods for Incomplete and Uncertain Data Emphasizing probability as an alternative to Boolean logic, Bayesian Programming covers new methods to build probabilistic programs for real-world applications. Written by the team who designed and implemented an efficient probabilistic inference engine to interpret Bayesian programs, the book offers many Python examples that are also available on a supplementary website together with an interpreter that allows readers to experiment with this new approach to programming. Principles and Modeling Only requiring a basic foundation in mathematics, the first two parts of the book present a new methodology for building subjective probabilistic models. The authors introduce the principles of Bayesian programming and discuss good practices for probabilistic modeling. Numerous simple examples highlight the application of Bayesian modeling in different fields. Formalism and Algorithms The third part synthesizes existing work on Bayesian inference algorithms since an efficient Bayesian inference engine is needed to automate the probabilistic calculus in Bayesian programs. Many bibliographic references are included for readers who would like more details on the formalism of Bayesian programming, the main probabilistic models, general purpose algorithms for Bayesian inference, and learning problems. FAQs Along with a glossary, the fourth part contains answers to frequently asked questions. The authors compare Bayesian programming and possibility theories, discuss the computational complexity of Bayesian inference, cover the irreducibility of incompleteness, and address the subjectivist versus objectivist epistemology of probability. The First Steps toward a Bayesian Computer A new modeling methodology, new inference algorithms, new programming languages, and new hardware are all needed to create a complete Bayesian computing framework. Focusing on the methodology and algorithms, this book describes the first steps toward reaching that goal. It encourages readers to explore emerging areas, such as bio-inspired computing, and develop new programming languages and hardware architectures.

Generalized Additive Models

Author: Simon N. Wood
Publisher: CRC Press
ISBN: 1498728375
Format: PDF, Mobi
Download Now
The first edition of this book has established itself as one of the leading references on generalized additive models (GAMs), and the only book on the topic to be introductory in nature with a wealth of practical examples and software implementation. It is self-contained, providing the necessary background in linear models, linear mixed models, and generalized linear models (GLMs), before presenting a balanced treatment of the theory and applications of GAMs and related models. The author bases his approach on a framework of penalized regression splines, and while firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of R software helps explain the theory and illustrates the practical application of the methodology. Each chapter contains an extensive set of exercises, with solutions in an appendix or in the book’s R data package gamair, to enable use as a course text or for self-study. Simon N. Wood is a professor of Statistical Science at the University of Bristol, UK, and author of the R package mgcv.

Statistical Inference

Author: Murray Aitkin
Publisher: CRC Press
ISBN: 1420093444
Format: PDF, Mobi
Download Now
Filling a gap in current Bayesian theory, Statistical Inference: An Integrated Bayesian/Likelihood Approach presents a unified Bayesian treatment of parameter inference and model comparisons that can be used with simple diffuse prior specifications. This novel approach provides new solutions to difficult model comparison problems and offers direct Bayesian counterparts of frequentist t-tests and other standard statistical methods for hypothesis testing. After an overview of the competing theories of statistical inference, the book introduces the Bayes/likelihood approach used throughout. It presents Bayesian versions of one- and two-sample t-tests, along with the corresponding normal variance tests. The author then thoroughly discusses the use of the multinomial model and noninformative Dirichlet priors in "model-free" or nonparametric Bayesian survey analysis, before covering normal regression and analysis of variance. In the chapter on binomial and multinomial data, he gives alternatives, based on Bayesian analyses, to current frequentist nonparametric methods. The text concludes with new goodness-of-fit methods for assessing parametric models and a discussion of two-level variance component models and finite mixtures. Emphasizing the principles of Bayesian inference and Bayesian model comparison, this book develops a unique methodology for solving challenging inference problems. It also includes a concise review of the various approaches to inference.

Pragmatics of Uncertainty

Author: Joseph B. Kadane
Publisher: CRC Press
ISBN: 1498719856
Format: PDF, ePub, Docs
Download Now
A fair question to ask of an advocate of subjective Bayesianism (which the author is) is "how would you model uncertainty?" In this book, the author writes about how he has done it using real problems from the past, and offers additional comments about the context in which he was working.