Probability for Physicists

Author: Simon Sirca
Publisher: Springer
ISBN: 3319316117
Format: PDF, Kindle
Download Now
This book is designed as a practical and intuitive introduction to probability, statistics and random quantities for physicists. The book aims at getting to the main points by a clear, hands-on exposition supported by well-illustrated and worked-out examples. A strong focus on applications in physics and other natural sciences is maintained throughout. In addition to basic concepts of random variables, distributions, expected values and statistics, the book discusses the notions of entropy, Markov processes, and fundamentals of random number generation and Monte-Carlo methods.

Probabilities in Physics

Author: Claus Beisbart
Publisher: Oxford University Press
ISBN: 0199577439
Format: PDF, ePub, Mobi
Download Now
This volume provides a philosophical appraisal of probabilities in all of physics. It makes sense of probabilistic statements as they occur in the various physical theories and models and presents a plausible epistemology and metaphysics of probabilities.

Probability in Physics

Author: Yemima Ben-Menahem
Publisher: Springer Science & Business Media
ISBN: 3642213286
Format: PDF, Mobi
Download Now
This collection of essays by some of the world's foremost experts, presents an in-depth analysis of the meaning of probabilities in contemporary physics.

Mathematics for Physics and Physicists

Author: Walter Appel
Publisher:
ISBN: 9780691131023
Format: PDF, ePub
Download Now
Aims to show graduate students and researchers the vital benefits of integrating mathematics into their study and experience of the physical world. This book details numerous topics from the frontiers of modern physics and mathematics such as convergence, Green functions, complex analysis, Fourier series and Fourier transform, tensors, and others.

General Relativity

Author: Norbert Straumann
Publisher: Springer Science & Business Media
ISBN: 3662118270
Format: PDF
Download Now
The foundations are thoroughly developed together with the required mathematical background from differential geometry developed in Part III. The author also discusses the tests of general relativity in detail, including binary pulsars, with much space is devoted to the study of compact objects, especially to neutron stars and to the basic laws of black-hole physics. This well-structured text and reference enables readers to easily navigate through the various sections as best matches their backgrounds and perspectives, whether mathematical, physical or astronomical. Very applications oriented, the text includes very recent results, such as the supermassive black-hole in our galaxy and first double pulsar system

Mathematics for Physics

Author: Michael Stone
Publisher: Cambridge University Press
ISBN: 1139480618
Format: PDF, Mobi
Download Now
An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.

Analysis and Probability

Author: Palle E. T. Jorgensen
Publisher: Springer Science & Business Media
ISBN: 0387330828
Format: PDF, Mobi
Download Now
Combines analysis and tools from probability, harmonic analysis, operator theory, and engineering (signal/image processing) Interdisciplinary focus with hands-on approach, generous motivation and new pedagogical techniques Numerous exercises reinforce fundamental concepts and hone computational skills Separate sections explain engineering terms to mathematicians and operator theory to engineers Fills a gap in the literature

Advanced Quantum Mechanics

Author: Rainer Dick
Publisher: Springer
ISBN: 3319256750
Format: PDF, Mobi
Download Now
In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of quantum electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquired an understanding of basic quantum mechanics and classical field theory, canonical field quantization is easy. Furthermore, the integrated discussion of transition a mplitudes naturally leads to the notions of transition probabilities, decay rates, absorption cross sections and scattering cross sections, which are important for all experimental techniques that use photon probes. Quantization is first discussed for the Schrödinger field before the relativistic Maxwell, Klein-Gordon and Dirac fields are quantized. Quantized Schrödinger field theory is not only important for condensed matter physics and materials science, but also provides the easiest avenue to general field quantization and is therefore also useful for students with an interest in nuclear and particle physics. The quantization of the Maxwell field is performed in Coulomb gauge. This is the appropriate and practically most useful quantization procedure in condensed matter physics, chemistry, and materials science because it naturally separates the effects of Coulomb interactions, exchange interactions, and photon scattering. The appendices contain additional material that is usually not found in standard quantum mechanics textbooks, including a completeness proof for eigenfunctions of one-dimensional Sturm-Liouville problems, logarithms of matrices, and Green’s functions in different dimensions.

Introduction to Statistical Physics

Author: Silvio Salinas
Publisher: Springer Science & Business Media
ISBN: 9780387951195
Format: PDF, Kindle
Download Now
This textbook covers the basic principles of statistical physics and thermodynamics. The text is pitched at the level equivalent to first-year graduate studies or advanced undergraduate studies. It presents the subject in a straightforward and lively manner. After reviewing the basic probability theory of classical thermodynamics, the author addresses the standard topics of statistical physics. The text demonstrates their relevance in other scientific fields using clear and explicit examples. Later chapters introduce phase transitions, critical phenomena and non-equilibrium phenomena.

Noise Theory and Application to Physics

Author: Philippe Réfrégier
Publisher: Springer Science & Business Media
ISBN: 0387225269
Format: PDF, Mobi
Download Now
This is a unique approach to noise theory and its application to physical measurements that will find its place among the graduate course books. In a very systematic way, the foundations are laid and applied in a way that the book will also be useful to those not focusing on optics. Exercises and solutions help students to deepen their knowledge.