Probability for Physicists

Author: Simon Sirca
Publisher: Springer
ISBN: 3319316117
Format: PDF, Kindle
Download Now
This book is designed as a practical and intuitive introduction to probability, statistics and random quantities for physicists. The book aims at getting to the main points by a clear, hands-on exposition supported by well-illustrated and worked-out examples. A strong focus on applications in physics and other natural sciences is maintained throughout. In addition to basic concepts of random variables, distributions, expected values and statistics, the book discusses the notions of entropy, Markov processes, and fundamentals of random number generation and Monte-Carlo methods.

Probability for Physicists

Author: Simon Sirca
Publisher: Springer
ISBN: 9783319810782
Format: PDF, Docs
Download Now
This book is designed as a practical and intuitive introduction to probability, statistics and random quantities for physicists. The book aims at getting to the main points by a clear, hands-on exposition supported by well-illustrated and worked-out examples. A strong focus on applications in physics and other natural sciences is maintained throughout. In addition to basic concepts of random variables, distributions, expected values and statistics, the book discusses the notions of entropy, Markov processes, and fundamentals of random number generation and Monte-Carlo methods.

Probability and Statistics in Experimental Physics

Author: Byron P. Roe
Publisher: Springer Science & Business Media
ISBN: 1475721862
Format: PDF, ePub, Mobi
Download Now
A practical introduction to the use of probability and statistics in experimental physics for graduate students and advanced undergraduates. Intended as a practical guide, and not as a comprehensive text, the emphasis is on applications and understanding, on theorems and techniques that are actually used in experimental physics. Proofs of theorems are generally omitted unless they contribute to the intuition in understanding and applying the theorem. The problems, many with worked solutions, introduce the student to the use of computers; occasional reference is made to some of the Fortran routines available in the CERN library, but other systems, such as Maple, will also be useful.

Mathematics for Physics and Physicists

Author: Walter Appel
Publisher:
ISBN: 9780691131023
Format: PDF, Mobi
Download Now
Aims to show graduate students and researchers the vital benefits of integrating mathematics into their study and experience of the physical world. This book details numerous topics from the frontiers of modern physics and mathematics such as convergence, Green functions, complex analysis, Fourier series and Fourier transform, tensors, and others.

Mathematics for Physics

Author: Michael Stone
Publisher: Cambridge University Press
ISBN: 1139480618
Format: PDF, Docs
Download Now
An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.

Radiation Physics for Medical Physicists

Author: Ervin B. Podgorsak
Publisher: Springer
ISBN: 3319253824
Format: PDF, Docs
Download Now
This textbook summarizes the basic knowledge of atomic, nuclear, and radiation physics that professionals working in medical physics and biomedical engineering need for efficient and safe use of ionizing radiation in medicine. Concentrating on the underlying principles of radiation physics, the textbook covers the prerequisite knowledge for medical physics courses on the graduate and post-graduate levels in radiotherapy physics, radiation dosimetry, imaging physics, and health physics, thus providing the link between elementary undergraduate physics and the intricacies of four medical physics specialties: diagnostic radiology physics, nuclear medicine physics, radiation oncology physics, and health physics. To recognize the importance of radiation dosimetry to medical physics three new chapters have been added to the 14 chapters of the previous edition. Chapter 15 provides a general introduction to radiation dosimetry. Chapter 16 deals with absolute radiation dosimetry systems that establish absorbed dose or some other dose related quantity directly from the signal measured by the dosimeter. Three absolute dosimetry techniques are known and described in detail: (i) calorimetric; (ii) chemical (Fricke), and (iii) ionometric. Chapter 17 deals with relative radiation dosimetry systems that rely on a previous dosimeter calibration in a known radiation field. Many relative radiation dosimetry systems have been developed to date and four most important categories used routinely in medicine and radiation protection are described in this chapter: (i) Ionometric dosimetry; (ii) Luminescence dosimetry; (iii) Semiconductor dosimetry; and (iv) Film dosimetry. The book is intended as a textbook for a radiation physics course in academic medical physics graduate programs as well as a reference book for candidates preparing for certification examinations in medical physics sub-specialties. It may also be of interest to many professionals, not only physicists, who in their daily occupations deal with various aspects of medical physics or radiation physics and have a need or desire to improve their understanding of radiation physics.

Computational Methods for Physicists

Author: Simon Sirca
Publisher: Springer Science & Business Media
ISBN: 3642324789
Format: PDF, ePub
Download Now
This book helps advanced undergraduate, graduate and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues as well as to the ways to optimize program execution speeds. Many examples are given throughout the chapters, and each chapter is followed by at least a handful of more comprehensive problems which may be dealt with, for example, on a weekly basis in a one- or two-semester course. In these end-of-chapter problems the physics background is pronounced, and the main text preceding them is intended as an introduction or as a later reference. Less stress is given to the explanation of individual algorithms. It is tried to induce in the reader an own independent thinking and a certain amount of scepticism and scrutiny instead of blindly following readily available commercial tools.

General Relativity

Author: Norbert Straumann
Publisher: Springer Science & Business Media
ISBN: 3662118270
Format: PDF, ePub, Docs
Download Now
The foundations are thoroughly developed together with the required mathematical background from differential geometry developed in Part III. The author also discusses the tests of general relativity in detail, including binary pulsars, with much space is devoted to the study of compact objects, especially to neutron stars and to the basic laws of black-hole physics. This well-structured text and reference enables readers to easily navigate through the various sections as best matches their backgrounds and perspectives, whether mathematical, physical or astronomical. Very applications oriented, the text includes very recent results, such as the supermassive black-hole in our galaxy and first double pulsar system

Analysis and Probability

Author: Palle E. T. Jorgensen
Publisher: Springer Science & Business Media
ISBN: 0387330828
Format: PDF, ePub, Mobi
Download Now
Combines analysis and tools from probability, harmonic analysis, operator theory, and engineering (signal/image processing) Interdisciplinary focus with hands-on approach, generous motivation and new pedagogical techniques Numerous exercises reinforce fundamental concepts and hone computational skills Separate sections explain engineering terms to mathematicians and operator theory to engineers Fills a gap in the literature

Advanced Quantum Mechanics

Author: Rainer Dick
Publisher: Springer
ISBN: 3319256750
Format: PDF, Docs
Download Now
In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of quantum electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquired an understanding of basic quantum mechanics and classical field theory, canonical field quantization is easy. Furthermore, the integrated discussion of transition a mplitudes naturally leads to the notions of transition probabilities, decay rates, absorption cross sections and scattering cross sections, which are important for all experimental techniques that use photon probes. Quantization is first discussed for the Schrödinger field before the relativistic Maxwell, Klein-Gordon and Dirac fields are quantized. Quantized Schrödinger field theory is not only important for condensed matter physics and materials science, but also provides the easiest avenue to general field quantization and is therefore also useful for students with an interest in nuclear and particle physics. The quantization of the Maxwell field is performed in Coulomb gauge. This is the appropriate and practically most useful quantization procedure in condensed matter physics, chemistry, and materials science because it naturally separates the effects of Coulomb interactions, exchange interactions, and photon scattering. The appendices contain additional material that is usually not found in standard quantum mechanics textbooks, including a completeness proof for eigenfunctions of one-dimensional Sturm-Liouville problems, logarithms of matrices, and Green’s functions in different dimensions.