Process Control System Fault Diagnosis

Author: Ruben Gonzalez
Publisher: John Wiley & Sons
ISBN: 1118770617
Format: PDF, ePub
Download Now
Process Control System Fault Diagnosis: A Bayesian Approach Ruben T. Gonzalez, University of Alberta, Canada Fei Qi, Suncor Energy Inc., Canada Biao Huang, University of Alberta, Canada Data-driven Inferential Solutions for Control System Fault Diagnosis A typical modern process system consists of hundreds or even thousands of control loops, which are overwhelming for plant personnel to monitor. The main objectives of this book are to establish a new framework for control system fault diagnosis, to synthesize observations of different monitors with a prior knowledge, and to pinpoint possible abnormal sources on the basis of Bayesian theory. Process Control System Fault Diagnosis: A Bayesian Approach consolidates results developed by the authors, along with the fundamentals, and presents them in a systematic way. The book provides a comprehensive coverage of various Bayesian methods for control system fault diagnosis, along with a detailed tutorial. The book is useful for graduate students and researchers as a monograph and as a reference for state-of-the-art techniques in control system performance monitoring and fault diagnosis. Since several self-contained practical examples are included in the book, it also provides a place for practicing engineers to look for solutions to their daily monitoring and diagnosis problems. Key features: • A comprehensive coverage of Bayesian Inference for control system fault diagnosis. • Theory and applications are self-contained. • Provides detailed algorithms and sample Matlab codes. • Theory is illustrated through benchmark simulation examples, pilot-scale experiments and industrial application. Process Control System Fault Diagnosis: A Bayesian Approach is a comprehensive guide for graduate students, practicing engineers, and researchers who are interests in applying theory to practice.

Computational Intelligence in Automotive Applications

Author: Danil Prokhorov
Publisher: Springer
ISBN: 3540792570
Format: PDF, ePub, Mobi
Download Now
What is computational intelligence (CI)? Traditionally, CI is understood as a collection of methods from the ?elds of neural networks (NN), fuzzy logic and evolutionary computation. Various de?nitions and opinions exist, but what belongs to CI is still being debated; see, e.g., [1–3]. More recently there has been a proposal to de?ne the CI not in terms of the tools but in terms of challenging problems to be solved [4]. With this edited volume I have made an attempt to give a representative sample of contemporary CI activities in automotive applications to illustrate the state of the art. While CI researchand achievements in some specialized ?elds described (see, e.g., [5, 6]), this is the ?rst volume of its kind dedicated to automotive technology. As if re?ecting the general lack of consensus on what constitutes the ?eld of CI, this volume 1 illustrates automotive applications of not only neural and fuzzy computations which are considered to be the “standard” CI topics, but also others, such as decision trees, graphicalmodels, Support Vector Machines (SVM), multi-agent systems, etc. This book is neither an introductory text, nor a comprehensive overview of all CI research in this area. Hopefully, as a broad and representative sample of CI activities in automotive applications, it will be worth reading for both professionals and students. When the details appear insu?cient, the reader is encouraged to consult other relevant sources provided by the chapter authors.

Benefits of Bayesian Network Models

Author: Philippe Weber
Publisher: John Wiley & Sons
ISBN: 184821992X
Format: PDF
Download Now
The application of Bayesian Networks (BN) or Dynamic Bayesian Networks (DBN) in dependability and risk analysis is a recent development. A large number of scientific publications show the interest in the applications of BN in this field. Unfortunately, this modeling formalism is not fully accepted in the industry. The questions facing today's engineers are focused on the validity of BN models and the resulting estimates. Indeed, a BN model is not based on a specific semantic in dependability but offers a general formalism for modeling problems under uncertainty. This book explains the principles of knowledge structuration to ensure a valid BN and DBN model and illustrate the flexibility and efficiency of these representations in dependability, risk analysis and control of multi-state systems and dynamic systems. Across five chapters, the authors present several modeling methods and industrial applications are referenced for illustration in real industrial contexts.

Modelling and Control of Dynamic Systems Using Gaussian Process Models

Author: Juš Kocijan
Publisher: Springer
ISBN: 3319210211
Format: PDF, ePub
Download Now
This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.

Intelligent Fault Diagnosis and Prognosis for Engineering Systems

Author: George Vachtsevanos
Publisher: Wiley
ISBN: 9780471729990
Format: PDF, ePub, Docs
Download Now
Expert guidance on theory and practice in condition-based intelligent machine fault diagnosis and failure prognosis Intelligent Fault Diagnosis and Prognosis for Engineering Systems gives a complete presentation of basic essentials of fault diagnosis and failure prognosis, and takes a look at the cutting-edge discipline of intelligent fault diagnosis and failure prognosis technologies for condition-based maintenance. It thoroughly details the interdisciplinary methods required to understand the physics of failure mechanisms in materials, structures, and rotating equipment, and also presents strategies to detect faults or incipient failures and predict the remaining useful life of failing components. Case studies are used throughout the book to illustrate enabling technologies. Intelligent Fault Diagnosis and Prognosis for Engineering Systems offers material in a holistic and integrated approach that addresses the various interdisciplinary components of the field--from electrical, mechanical, industrial, and computer engineering to business management. This invaluably helpful book: * Includes state-of-the-art algorithms, methodologies, and contributions from leading experts, including cost-benefit analysis tools and performance assessment techniques * Covers theory and practice in a way that is rooted in industry research and experience * Presents the only systematic, holistic approach to a strongly interdisciplinary topic

Statistical Methods for Forecasting

Author: Bovas Abraham
Publisher: John Wiley & Sons
ISBN: 0470317299
Format: PDF, ePub
Download Now
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This book, it must be said, lives up to the words on its advertising cover: 'Bridging the gap between introductory, descriptive approaches and highly advanced theoretical treatises, it provides a practical, intermediate level discussion of a variety of forecasting tools, and explains how they relate to one another, both in theory and practice.' It does just that!" -Journal of the Royal Statistical Society "A well-written work that deals with statistical methods and models that can be used to produce short-term forecasts, this book has wide-ranging applications. It could be used in the context of a study of regression, forecasting, and time series analysis by PhD students; or to support a concentration in quantitative methods for MBA students; or as a work in applied statistics for advanced undergraduates." -Choice Statistical Methods for Forecasting is a comprehensive, readable treatment of statistical methods and models used to produce short-term forecasts. The interconnections between the forecasting models and methods are thoroughly explained, and the gap between theory and practice is successfully bridged. Special topics are discussed, such as transfer function modeling; Kalman filtering; state space models; Bayesian forecasting; and methods for forecast evaluation, comparison, and control. The book provides time series, autocorrelation, and partial autocorrelation plots, as well as examples and exercises using real data. Statistical Methods for Forecasting serves as an outstanding textbook for advanced undergraduate and graduate courses in statistics, business, engineering, and the social sciences, as well as a working reference for professionals in business, industry, and government.

Models of Failure

Author: Ilya Gertsbakh
Publisher: Springer Science & Business Media
ISBN: 364287519X
Format: PDF, ePub, Mobi
Download Now
The increase in the requirements on the reliability of units makes it necessary to analyze the relationship between mathematicalmeth ods of calculating reliability and the physical nature of fail ures. The difficulty of such an analysis is obvious. On the one hand, in making a representation of the physical picture of a phe nomenon, one can make an error in the direction of excessive sim plification. On the other hand, in the mathematical treatment of the physical scheme, it may be necessary to use extremely complex and fine analytical methods, and their simplified exposition bor ders on vulgarization. Without the aid of a large number of specialists working in the field of analysis and calculation of systems reliability, an ex posi tion of models of failures and their mathematical treatment would be unobtainable. The authors take this opportunity to express their gratitude to Academicians N. G. B r u y vic e h and Y u. V. Lin n i k conversations with whom clarified a number of problems treated, to active member of the Academy of Sciences of the UkrSSR B. V.

System Identification

Author: Karel J. Keesman
Publisher: Springer Science & Business Media
ISBN: 9780857295224
Format: PDF, Mobi
Download Now
System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.

Human Detection and Diagnosis of System Failures

Author: Jens Rasmussen
Publisher: Springer Science & Business Media
ISBN: 1461592305
Format: PDF, Docs
Download Now
This book includes all of the papers presented at the NATO Symposium on Human Detection and Diagnosis of System Failures held at Roskilde, Denmark on August 4-8, 1980. The Symposium was sponsored by the Scientific Affairs Division of NATO and the Rise National Laboratory of Denmark. The goal of the Symposium was to continue the tradition initiated by the NATO Symposium on Monitoring Behavior and Supervisory Control held in Berchtesgaden, F .R. Germany in 1976 and the NATO Symposium on Theory and Measurement of Mental Workload held in Mati, Greece in 1977. To this end, a group of 85 psychologists and engineers coming from industry, government, and academia convened to discuss, and to generate a "state-of-the-art" consensus of the problems and solutions associated with the human IS ability to cope with the increasing scale of consequences of failures within complex technical systems. The Introduction of this volume reviews their findings. The Symposium was organized to include brief formal presentations of papers sent to participants about two months in advance of the meeting, and considerable discussion both during plenary sessions and within more specialized workshops. Summaries of the discussions and workshop reports appear in this volume.