Process Control System Fault Diagnosis

Author: Ruben Gonzalez
Publisher: John Wiley & Sons
ISBN: 1118770617
Format: PDF, Mobi
Download Now
Process Control System Fault Diagnosis: A Bayesian Approach Ruben T. Gonzalez, University of Alberta, Canada Fei Qi, Suncor Energy Inc., Canada Biao Huang, University of Alberta, Canada Data-driven Inferential Solutions for Control System Fault Diagnosis A typical modern process system consists of hundreds or even thousands of control loops, which are overwhelming for plant personnel to monitor. The main objectives of this book are to establish a new framework for control system fault diagnosis, to synthesize observations of different monitors with a prior knowledge, and to pinpoint possible abnormal sources on the basis of Bayesian theory. Process Control System Fault Diagnosis: A Bayesian Approach consolidates results developed by the authors, along with the fundamentals, and presents them in a systematic way. The book provides a comprehensive coverage of various Bayesian methods for control system fault diagnosis, along with a detailed tutorial. The book is useful for graduate students and researchers as a monograph and as a reference for state-of-the-art techniques in control system performance monitoring and fault diagnosis. Since several self-contained practical examples are included in the book, it also provides a place for practicing engineers to look for solutions to their daily monitoring and diagnosis problems. Key features: • A comprehensive coverage of Bayesian Inference for control system fault diagnosis. • Theory and applications are self-contained. • Provides detailed algorithms and sample Matlab codes. • Theory is illustrated through benchmark simulation examples, pilot-scale experiments and industrial application. Process Control System Fault Diagnosis: A Bayesian Approach is a comprehensive guide for graduate students, practicing engineers, and researchers who are interests in applying theory to practice.

Computational Intelligence in Automotive Applications

Author: Danil Prokhorov
Publisher: Springer
ISBN: 3540792570
Format: PDF
Download Now
What is computational intelligence (CI)? Traditionally, CI is understood as a collection of methods from the ?elds of neural networks (NN), fuzzy logic and evolutionary computation. Various de?nitions and opinions exist, but what belongs to CI is still being debated; see, e.g., [1–3]. More recently there has been a proposal to de?ne the CI not in terms of the tools but in terms of challenging problems to be solved [4]. With this edited volume I have made an attempt to give a representative sample of contemporary CI activities in automotive applications to illustrate the state of the art. While CI researchand achievements in some specialized ?elds described (see, e.g., [5, 6]), this is the ?rst volume of its kind dedicated to automotive technology. As if re?ecting the general lack of consensus on what constitutes the ?eld of CI, this volume 1 illustrates automotive applications of not only neural and fuzzy computations which are considered to be the “standard” CI topics, but also others, such as decision trees, graphicalmodels, Support Vector Machines (SVM), multi-agent systems, etc. This book is neither an introductory text, nor a comprehensive overview of all CI research in this area. Hopefully, as a broad and representative sample of CI activities in automotive applications, it will be worth reading for both professionals and students. When the details appear insu?cient, the reader is encouraged to consult other relevant sources provided by the chapter authors.

Benefits of Bayesian Network Models

Author: Philippe Weber
Publisher: John Wiley & Sons
ISBN: 1119347459
Format: PDF, Mobi
Download Now
The application of Bayesian Networks (BN) or Dynamic Bayesian Networks (DBN) in dependability and risk analysis is a recent development. A large number of scientific publications show the interest in the applications of BN in this field. Unfortunately, this modeling formalism is not fully accepted in the industry. The questions facing today's engineers are focused on the validity of BN models and the resulting estimates. Indeed, a BN model is not based on a specific semantic in dependability but offers a general formalism for modeling problems under uncertainty. This book explains the principles of knowledge structuration to ensure a valid BN and DBN model and illustrate the flexibility and efficiency of these representations in dependability, risk analysis and control of multi-state systems and dynamic systems. Across five chapters, the authors present several modeling methods and industrial applications are referenced for illustration in real industrial contexts.

Advances in Computer Science and Ubiquitous Computing

Author: Doo-Soon Park
Publisher: Springer
ISBN: 9811002819
Format: PDF, ePub, Mobi
Download Now
This book presents the combined proceedings of the 7th International Conference on Computer Science and its Applications (CSA-15) and the International Conference on Ubiquitous Information Technologies and Applications (CUTE 2015), both held in Cebu, Philippines, December 15 - 17, 2015. The aim of these two meetings was to promote discussion and interaction among academics, researchers and professionals in the field of computer science covering topics including mobile computing, security and trust management, multimedia systems and devices, networks and communications, databases and data mining, and ubiquitous computing technologies such as ubiquitous communication and networking, ubiquitous software technology, ubiquitous systems and applications, security and privacy. These proceedings reflect the state-of-the-art in the development of computational methods, numerical simulations, error and uncertainty analysis and novel applications of new processing techniques in engineering, science, and other disciplines related to computer science.