Quantitative Methods in Reservoir Engineering

Author: Wilson C. Chin, PhD
Publisher: Gulf Professional Publishing
ISBN: 012811097X
Format: PDF, Kindle
Download Now
Quantitative Methods in Reservoir Engineering, Second Edition, brings together the critical aspects of the industry to create more accurate models and better financial forecasts for oil and gas assets. Updated to cover more practical applications related to intelligent infill drilling, optimized well pattern arrangement, water flooding with modern wells, and multiphase flow, this new edition helps reservoir engineers better lay the mathematical foundations for analytical or semi-analytical methods in today’s more difficult reservoir engineering applications. Authored by a worldwide expert on computational flow modeling, this reference integrates current mathematical methods to aid in understanding more complex well systems and ultimately guides the engineer to choose the most profitable well path. The book delivers a valuable tool that will keep reservoir engineers up-to-speed in this fast-paced sector of the oil and gas market. Stay competitive with new content on unconventional reservoir simulation Get updated with new material on formation testing and flow simulation for complex well systems and paths Apply methods derived from real-world case studies and calculation examples

Reservoir Engineering in Modern Oilfields

Author: Wilson C. Chin
Publisher: John Wiley & Sons
ISBN: 1119284619
Format: PDF
Download Now
Real-world reservoirs are layered, heterogeneous and anisotropic, exposed to water and gas drives, faults, barriers and fractures. They are produced by systems of vertical, deviated, horizontal and multilateral wells whose locations, sizes, shapes and topologies are dictated "on the fly, at random"by petroleum engineers and drillers at well sites. Wells may be pressure or rate-constrained, with these roles re-assigned during simulation with older laterals shut-in, newer wells drilled and brought on stream, and so on. And all are subject to steady and transient production, each satisfying different physical and mathematical laws, making reservoir simulation an art difficult to master and introducing numerous barriers to entry. All of these important processes can now be simulated in any order using rapid, stable and accurate computational models developed over two decades. And what if it were further possible to sketch complicated geologies and lithologies, plus equally complex systems of general wells, layer-by-layer using Windows Notepad? And with no prior reservoir simulation experience and only passing exposure to reservoir engineering principles? Have the user press "Simulate," and literally, within minutes, produce complicated field-wide results, production forecasts, and detailed three-dimensional color pressure plots from integrated graphics algorithms? Developed over years of research, this possibility has become reality. The author, an M.I.T. trained scientist who has authored fifteen original research books, over a hundred papers and forty patents, winner of a prestigious British Petroleum Chairman's Innovation Award in reservoir engineering and a record five awards from the United States Department of Energy, has delivered just such a product, making real-time planning at the well-site simple and practical. Workflows developed from experience as a practicing reservoir engineer are incorporated into "intelligent menus" that make in-depth understanding of simulation principles and readings of user manuals unnecessary. This volume describes new technology for down-to-earth problems using numerous examples performed with our state-of-the-art simulator, one that is available separately at affordable cost and requiring only simple Intel Core i5 computers without specialized graphics boards. The new methods are rigorous, validated and well-documented and are now available for broad petroleum industry application.

Hydraulic Fracture Modeling

Author: Yu-Shu Wu
Publisher: Gulf Professional Publishing
ISBN: 0128129999
Format: PDF, ePub, Docs
Download Now
Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today’s petroleum engineer with an all-inclusive product to characterize and optimize today’s more complex reservoirs. Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics Provides today’s petroleum engineer with model validation tools backed by real-world case studies

Geothermal Reservoir Engineering

Author: Malcomm Grant
Publisher: Elsevier
ISBN: 0323152910
Format: PDF, Kindle
Download Now
Geothermal Reservoir Engineering offers a comprehensive account of geothermal reservoir engineering and a guide to the state-of-the-art technology, with emphasis on practicality. Topics covered include well completion and warm-up, flow testing, and field monitoring and management. A case study of a geothermal well in New Zealand is also presented. Comprised of 10 chapters, this book opens with an overview of geothermal reservoirs and the development of geothermal reservoir engineering as a discipline. The following chapters focus on conceptual models of geothermal fields; simple models that illustrate some of the processes taking place in geothermal reservoirs under exploitation; measurements in a well from spudding-in up to first discharge; and flow measurement. The next chapter provides a case history of one well in the Broadlands Geothermal Field in New Zealand, with particular reference to its drilling, measurement, discharge, and data analysis/interpretation. The changes that have occurred in exploited geothermal fields are also reviewed. The final chapter considers three major problems of geothermal reservoir engineering: rapid entry of external cooler water, or return of reinjected water, in fractured reservoirs; the effects of exploitation on natural discharges; and subsidence. This monograph serves as both a text for students and a manual for working professionals in the field of geothermal reservoir engineering. It will also be of interest to engineers and scientists of other disciplines.

Multiphase Fluid Flow in Porous and Fractured Reservoirs

Author: Yu-Shu Wu
Publisher: Gulf Professional Publishing
ISBN: 0128039116
Format: PDF
Download Now
Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today’s reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs Explains analytical solutions and approaches as well as applications to modeling verification for today’s reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency Utilize practical codes and programs featured from online companion website

Seismic Exploration of Hydrocarbons in Heterogeneous Reservoirs

Author: Jing Ba
Publisher: Elsevier
ISBN: 0124202055
Format: PDF, ePub
Download Now
Seismic Exploration of Hydrocarbons in Heterogeneous Reservoirs: New Theories, Methods and Applications is based on the field research conducted over the past decade by an authoring team of five of the world’s leading geoscientists. In recent years, the exploration targets of world's oil companies have become more complex. The direct detection of hydrocarbons based on seismic wave data in heterogeneous oil/gas reservoirs has become a hot spot in the research of applied and exploration geophysics. The relevant theories, approaches and applications, which the authors have worked on for years and have established mature technical processes for industrial application, are of significant meaning to the further study and practice of engineers, researchers and students in related area. Authored by a team of geophysicists in industry and academia with a range of field, instruction, and research experience in hydrocarbon exploration Nearly 200 figures, photographs, and illustrations aid in the understanding of the fundamental concepts and techniques Presents the latest research in wave propagation theory, unconventional resources, experimental study, multi-component seismic processing and imaging, rock physics modeling and quantitative seismic interpretation Sophisticated approach to research systematically forms an industrial work flow for geoscience and engineering practice

Principles of Applied Reservoir Simulation

Author: John R. Fanchi,
Publisher: Gulf Professional Publishing
ISBN: 0128155647
Format: PDF, ePub, Docs
Download Now
Reservoir engineers today need to acquire more complex reservoir management and modeling skills. Principles of Applied Reservoir Simulation, Fourth Edition, continues to provide the fundamentals on these topics for both early and seasoned career engineers and researchers. Enhanced with more practicality and with a focus on more modern reservoir simulation workflows, this vital reference includes applications to not only traditional oil and gas reservoir problems but specialized applications in geomechanics, coal gas modelling, and unconventional resources. Strengthened with complementary software from the author to immediately apply to the engineer’s projects, Principles of Applied Reservoir Simulation, Fourth Edition, delivers knowledge critical for today’s basic and advanced reservoir and asset management. Gives hands-on experience in working with reservoir simulators and links them to other petroleum engineering activities Teaches on more specific reservoir simulation issues such as run control, tornado plot, linear displacement, fracture and cleat systems, and modern modelling workflows Updates on more advanced simulation practices like EOR, petrophysics, geomechanics, and unconventional reservoirs

Intelligent Digital Oil and Gas Fields

Author: Gustavo Carvajal
Publisher: Gulf Professional Publishing
ISBN: 012804747X
Format: PDF, ePub
Download Now
Intelligent Digital Oil and Gas Fields: Concepts, Collaboration, and Right-time Decisions delivers to the reader a roadmap through the fast-paced changes in the digital oil field landscape of technology in the form of new sensors, well mechanics such as downhole valves, data analytics and models for dealing with a barrage of data, and changes in the way professionals collaborate on decisions. The book introduces the new age of digital oil and gas technology and process components and provides a backdrop to the value and experience industry has achieved from these in the last few years. The book then takes the reader on a journey first at a well level through instrumentation and measurement for real-time data acquisition, and then provides practical information on analytics on the real-time data. Artificial intelligence techniques provide insights from the data. The road then travels to the "integrated asset" by detailing how companies utilize Integrated Asset Models to manage assets (reservoirs) within DOF context. From model to practice, new ways to operate smart wells enable optimizing the asset. Intelligent Digital Oil and Gas Fields is packed with examples and lessons learned from various case studies and provides extensive references for further reading and a final chapter on the "next generation digital oil field," e.g., cloud computing, big data analytics and advances in nanotechnology. This book is a reference that can help managers, engineers, operations, and IT experts understand specifics on how to filter data to create useful information, address analytics, and link workflows across the production value chain enabling teams to make better decisions with a higher degree of certainty and reduced risk. Covers multiple examples and lessons learned from a variety of reservoirs from around the world and production situations Includes techniques on change management and collaboration Delivers real and readily applicable knowledge on technical equipment, workflows and data challenges such as acquisition and quality control that make up the digital oil and gas field solutions of today Describes collaborative systems and ways of working and how companies are transitioning work force to use the technology and making more optimal decisions

Quantitative Seismic Interpretation

Author: Per Avseth
Publisher: Cambridge University Press
ISBN: 1107320275
Format: PDF, Kindle
Download Now
Quantitative Seismic Interpretation demonstrates how rock physics can be applied to predict reservoir parameters, such as lithologies and pore fluids, from seismically derived attributes. The authors provide an integrated methodology and practical tools for quantitative interpretation, uncertainty assessment, and characterization of subsurface reservoirs using well-log and seismic data. They illustrate the advantages of these new methodologies, while providing advice about limitations of the methods and traditional pitfalls. This book is aimed at graduate students, academics and industry professionals working in the areas of petroleum geoscience and exploration seismology. It will also interest environmental geophysicists seeking a quantitative subsurface characterization from shallow seismic data. The book includes problem sets and a case-study, for which seismic and well-log data, and Matlab codes are provided on a website (http://www.cambridge.org/9780521816014). These resources will allow readers to gain a hands-on understanding of the methodologies.